
Stable-Π Partitions of Graphs

Konrad K. Dabrowskia, Vadim V. Lozinb, Juraj Stachob,∗

aESSEC Business School, Av. B. Hirsch, 95021 Cergy Pontoise, France
bDIMAP and Mathematics Institute, University of Warwick, Coventry CV4 7AL, United Kingdom

Abstract

For a set of graphs Π, the STABLE-Π problem asks whether, given a graph G, we can find an independent
set S in G, such that G − S ∈ Π. For instance, if Π is the set of all bipartite graphs, STABLE-Π coincides
with VERTEX 3-COLOURABILITY, and if Π is the set of 1-regular graphs, the problem is known as EFFICIENT

EDGE DOMINATION. Numerous other examples of the STABLE-Π problem have been studied in the literature.
In the present contribution, we systematically study the STABLE-Π problem with respect to the speed (a
term meaning size) of Π. In particular, we show that for all hereditary classes Π with a subfactorial speed
of growth, STABLE-Π is solvable in polynomial time. We then explore the problem for minimal hereditary
factorial classes Π. Contrary to the conjecture proposed in [18], the complexity of STABLE-Π turns out to be
polynomial for nearly all minimal hereditary factorial classes Π. On the other hand, if we do not require Π
to be hereditary, the complexity of the problem can jump to NP-completeness.

Key words: stable-Π partition, hereditary property, speed of graph property, factorial property,
polynomial-time, NP-complete

1. Introduction

In this paper, all graphs are undirected, with no loops or parallel edges. A graph is bipartite, co-bipartite or
split if its vertex set can be partitioned into two independent sets, two cliques or a clique and an independent
set, respectively. If X is a set of vertices in a graph G, we use G − X to denote the graph obtained from
G by deleting every vertex in X. We use G[X] to denote the subgraph of G induced by X, i.e. the graph
G − (V(G) \ X). If G and H are graphs, then G is H-free if it does not contain an induced subgraph
isomorphic to H. We use 2K2 to denote the graph consisting of two disjoint edges, and P4 to denote the
chordless path on four vertices.

Let Π be a graph property (or graph class), i.e. a set of graphs closed under isomorphism. A property
Π is hereditary if it is closed under taking induced subgraphs, and it is additive if it is closed under taking
disjoint unions of graphs.

For a property Π, the STABLE-Π problem asks, given a graph G, to determine whether G has an
independent set S such that G − S ∈ Π. The family of STABLE-Π problems has been extensively studied
in the literature (see e.g. [5, 6, 7, 8, 11, 13, 14, 15, 20]) and includes many important representatives
such as VERTEX 3-COLOURABILITY, in which case Π is the set of all bipartite graphs, and EFFICIENT EDGE

DOMINATION (also known as DOMINATING INDUCED MATCHING), in which case Π is the set of all 1-regular
graphs. Both of these examples represent algorithmically hard, i.e. NP-complete, problems. The STABLE-Π
problem is also NP-complete for various other properties Π such as forests or trivially perfect graphs [5].
More generally, the problem remains NP-complete for any additive hereditary property Π other than the set
of edgeless graphs [16].

∗Corresponding author
Email addresses: dabrowski@essec.edu (Konrad K. Dabrowski), v.lozin@warwick.ac.uk (Vadim V. Lozin),

stacho@cs.toronto.edu (Juraj Stacho)

Preprint submitted to Elsevier February 3, 2017

On the other hand, for some properties Π, the STABLE-Π problem can be solved in polynomial time. This
is the case, for instance, if Π is the class of co-bipartite graphs [5] or the class of complete bipartite graphs
[4]. The case of co-bipartite graphs was generalised independently in [2] and [9] to arbitrary hereditary
properties Π which are of bounded independence number and which can be recognised in polynomial time.
The case where Π is the class of complete bipartite graphs has also received a wide generalisation. To
describe this generalisation, let us observe that the class of complete bipartite graphs is quite small. In the
terminology of [3], it is subfactorial, i.e. for any constant c > 0, Π has less than ncn labelled graphs on n
vertices, if n is sufficiently large. Subfactorial graph properties have a simple structural characterisation (see
Theorem 1). This was used in [18] to prove that the STABLE-Π problem is polynomial-time solvable for any
subfactorial hereditary property Π of bipartite graphs.

In the present paper, we further generalise this result to arbitrary subfactorial hereditary properties Π
(not necessarily of bipartite graphs). We then switch to hereditary properties with a factorial speed of
growth, i.e. those containing at least nc1n and at most nc2n labelled graphs on n vertices for some constants
c1, c2 > 0, when n is sufficiently large. The family of factorial graph properties is much wider and contains
many classes of theoretical or practical importance. For instance the classes of threshold graphs, line graphs,
permutation graphs, and interval graphs are factorial and all classes of graphs of bounded vertex degree, of
bounded clique-width and all proper minor closed graph classes have at most factorial speed of growth.

The family of factorial hereditary classes is very rich and varied, but there are only a few such classes
for which the complexity of the STABLE-Π problem is known. It is therefore natural to focus on the simplest
classes in this family, namely those that are minimal (when ordered by set inclusion). There are exactly nine
such classes [1, 3]. Three of them are subclasses of bipartite graphs:

M1 bipartite matching graphs: graphs partitionable into two independent sets, where the edges between
them form a matching (equivalently, graphs of maximum degree one)

M2 bipartite almost complete graphs: graphs partitionable into two independent sets such that each vertex
has at most one non-neighbour in the opposite part

M3 chain graphs: bipartite 2K2-free graphs

Three other minimal factorial classes are subclasses of co-bipartite graphs: these are precisely the classes
of complements of graphs inM1, M2 andM3, which we denote byM1, M2, andM3, respectively. The
remaining three minimal factorial classes are subclasses of split graphs. They are also closely related toM1,
M2 andM3 and can be obtained from graphs in these classes by converting one of the independent sets in
the bipartition into a clique. We denote these classes as follows:

M4 split matching graphs: graphs partitionable into a clique and an independent set, where the edges
between them form a matching

M4 complements of split matching graphs: graphs partitionable into a clique and an independent set so
that each vertex has at most one non-neighbour in the opposite part

M5 threshold graphs: split P4-free graphs

It is known that STABLE-M1 is an NP-complete problem [17, 19], while STABLE-M5 is solvable in
polynomial time [5]. For the remaining seven minimal factorial classes, the complexity of the problem
was unknown and we study it in the present paper.

The borderline between factorial and subfactorial properties was also studied in [21] for the following
problem associated with a hereditary class Π of bipartite graphs: given a bipartite graph G, find the
largest induced subgraph of G that belongs to Π. Yannakakis [21] showed that this problem is solvable
in polynomial time if Π is a subfactorial hereditary class, and is NP-hard otherwise (except for the case
when Π coincides with the class of all bipartite graphs, in which case the problem is trivial). Inspired by this
result, Lozin conjectured [18] that the STABLE-Π problem is NP-complete for all hereditary factorial classes
of bipartite graphs, including the three minimal hereditary factorial classes. Contrary to this conjecture, we

2

Π STABLE-Π STABLE-ΠS

M1 NP-C [17, 19] NP-C [12]
M1 P Thm 6 P Thm 15

M2 P Thm 14 NP-C Thm 19
M2 P Thm 6 P Thm 15

M3 open n/a
M3 P Thm 6 n/a

M4 P Thm 7 NP-C Thm 17
M4 P Thm 8 NP-C Thm 18

M5 =M5 P [5] n/a

Table 1: Summary of complexity results.

show that STABLE-Π is solvable in polynomial time for nearly all minimal hereditary factorial classes Π (not
necessarily bipartite).

Let us emphasise that these nine minimal classes of graphs are hereditary and most of the instances of
the STABLE-Π problem that have been studied in the literature deal with hereditary properties Π. On the
other hand, some important examples of the problem appear in the context of non-hereditary properties Π.
We already mentioned EFFICIENT EDGE DOMINATION, which is equivalent to STABLE-Π when Π is the set
of 1-regular graphs. We denote the class of 1-regular graphs by MS

1 . Observe that this set is a restriction
of the class M1. More precisely, M1 is the hereditary closure of the set of 1-regular graphs (i.e. it is the
set containing all 1-regular graphs and all their induced subgraphs). In the same spirit, we define MS

2 to
be the class of graphs partitionable into two independent sets such that each vertex has exactly one non-
neighbour in the opposite part and define MS

4 to be the class of graphs partitionable into a clique and an
independent set such that every vertex in one part has exactly one neighbour in the opposite part. As before,
we writeMS

1 ,MS
2 andMS

4 to denote the classes of graphs whose complements are inMS
1 ,MS

2 andMS
4 ,

respectively.
We find that for some minimal factorial classes Π for which STABLE-Π can be solved in polynomial time,

the restriction to ΠS leads to an NP-complete problem. A summary of our results is given in Table 1.

2. Preliminaries

A graph property, or graph class is any set Π of simple graphs closed under isomorphism. The graph-
complement Π of a property Π is defined as Π =

{
G | G ∈ Π

}
. A graph property is hereditary if it is closed

under vertex removal, or equivalently, under taking induced subgraphs. A hereditary graph property Π is
factorial if there exist positive constants c1, c2, N such that nc1n ≤ |Πn| ≤ nc2n when n > N, where Πn
denotes the set of n-vertex labelled graphs in Π. A class is subfactorial if for every c > 0, |Πn| ≤ ncn when n
is sufficiently large. The structure of subfactorial classes is rather simple and can be characterised as follows.

Let M be a symmetric {0, 1}-matrix with t rows and t columns, for some t > 0. Let b be a function
b : {1, . . . , t} → N ∪ {∞}. We write P(M, b) to denote the set of all graphs G that admit a vertex partition
into t sets V1, . . . , Vt such that

(I) each set Vi contains at most b(i) elements,
(II) Vi is a clique of G if M(i, i) = 1; otherwise Vi is an independent set of G, and

(III) for distinct sets Vi, Vj, either every vertex of Vi is adjacent to every vertex of Vj if M(i, j) = 1;
or there are no edges between Vi and Vj if M(i, j) = 0.

Theorem 1. [1, 3] For every subfactorial hereditary class Π, there is a finite collection (depending only on Π) of
matrices M1, . . . , Mk and functions b1, . . . , bk such that Π is precisely the union of P(Mi, bi) where i = 1, . . . , k.

Note that the original theorem in [3] states that the above holds for sufficiently large graphs. We can
omit this condition by including the adjacency matrices of all smaller graphs into the collection M1, . . . , Mk.

3

3. Subfactorial properties

Theorem 2. For any subfactorial hereditary property Π, the STABLE-Π problem is solvable in polynomial time.

PROOF. By Theorem 1, it suffices to explain how to solve the STABLE-Π problem in polynomial time when
Π = P(M, b) where M is a symmetric {0, 1}-matrix M with t rows and t columns, and b is a function
b : {1, . . . , t} →N∪ {∞}.

Without loss of generality, we may assume that M contains no repeated rows or columns, since by
removing any such row (and the corresponding column), and adjusting b, we can obtain an equivalent
description of Π, with smaller t. Indeed, if, for instance, last two rows of M are the same, then we can
instead consider the matrix M′ obtained from M by removing its last row and column, and define b′ as
follows: b′(i) = b(i) for all i < t − 1, and b′(t − 1) = b(t − 1) + b(t) if neither b(t − 1) nor b(t) is ∞;
otherwise b′(t− 1) = ∞. Then clearly P(M′, b′) = P(M, b) = Π.

With this assumption, we can now explain how to solve the STABLE-Π problem. Namely, given a graph
G = (V, E), we want to determine if there is a partition V = S ∪ R, such that S is an independent set of G
and G[R] ∈ Π. We call any partition V1, . . . , Vt of R canonical if it satisfies conditions (I)-(III), as defined
before the statement of Theorem 1, and call the subsets in a canonical partition bags.

Without loss of generality, we shall try to find a canonical partition of R where all bags are non-empty.
Indeed, if we cannot find such a partition, we may in turn try to solve the problem for all submatrices of M
in place of M, and there are only constantly many such submatrices.

We start by setting the set R and all bags V1, . . . , Vt to be empty. Then, we proceed as follows. For each i
such that b(i) 6= ∞, we choose a non-empty subset of at most b(i) vertices of G to be the bag Vi, and include
Vi into R. We also designate some vi ∈ Vi to be the representative of Vi. Similarly, for each i where b(i) = ∞,
we pick one vertex vi of G to be the representative of the bag Vi, and move vi to Vi and R. Note that there
are O(nc) ways to accomplish all of this, where c = t + ∑b(i) 6=∞ b(i) is a constant.

We consider every such set of choices in turn. Recall that each such choice produces initial sets V1, . . . , Vt
forming a partition of R and representatives v1, . . . , vt where vi ∈ Vi for i ∈ {1, . . . , t}. If the partition of
R into V1, . . . , Vt is not canonical, we disregard this choice. Otherwise, we use 2SAT to find a set S disjoint
from R (if exists) such that G− S ∈ Π. Namely, we use 2SAT to assign each vertex in V \ R either to S or to
one of the bags Vi with b(i) = ∞. (We consider the bags Vi with b(i) 6= ∞ to be fixed by the initial choice,
and thus we do not allow assigning further vertices to these bags.) We proceed as follows.

For each vertex v ∈ V \ R, we define a candidate bag Vi to be a bag such that including v into Vi and R
results in a canonical partition of R. We observe that there can be at most one candidate bag for v, since
we assume that M contains no identical rows. To see this, note that it is possible to include v in Vi if for
every j (possibly j = i), we have vvj ∈ E(G) if M(i, j) = 1, and have vvj 6∈ E(G) if M(i, j) = 0. Clearly,
there cannot be distinct bags Vi, Vi′ satisfying this for v, since this would imply that the rows i and i′ of M
were identical, which we assumed not to be the case.

The instance of 2SAT is constructed as follows. For every vertex v ∈ V \ R, we create a Boolean
variable xv. For each v ∈ V \ R, we add the unit clause (xv) if either there is no candidate bag for v,
or if the candidate bag Vi for v is such that b(i) 6= ∞. For distinct vertices u, v ∈ V \ R, we add the clause
(xu ∨ xv) if u, v are adjacent. Similarly, for distinct u, v ∈ V \ R, we add the clause (xu ∨ xv) if u, v are
adjacent (resp. non-adjacent), but either they have the same candidate bag which is an independent set
(resp. a clique), or their candidate bags are distinct but non-adjacent (resp. adjacent).

The resulting instance of 2SAT has polynomial size and thus can be solved in polynomial time. In
particular, if the instance is satisfiable, then S = {v | xv = true} is an independent set and G − S ∈ Π.
If the instance is not satisfiable, then no solution exists for the fixed sets Vi and representatives vi that we
chose at the start. In this case we try another set of choices. If no such initial choice of sets succeeds, then
we declare that there is no independent set in G whose removal produces a graph in Π.

This concludes the proof. �

4

4. Minimal factorial properties

In this section, we discuss the complexity of STABLE-Π for minimal factorial hereditary classes Π. We
investigate each case as set out in the introduction. Note that all these problems are clearly in the class NP
as testing any of the properties M1, . . . ,M5 can be easily done in polynomial (in fact, linear) time. The
same holds for the restricted cases discussed later, in Section 5.

The following cases have already been established in the literature.

Theorem 3. [17, 19] The STABLE-M1 problem is NP-complete.

Theorem 4. [5] The STABLE-M5 problem is solvable in polynomial time.

Further results in this section are based on the notion of Sparse-Dense partitions.

Theorem 5. (Sparse-Dense Theorem) [2, 9] For all positive integers k, l, there exists a polynomial time
algorithm that, given a graph G, constructs all partitions of its vertex set into sets A, B such that G[A] contains
no independent set of size k and G[B] contains no clique of size l.

Namely, there are at most n2R(k,l)−2 such partitions of an n-vertex graph G and all can be enumerated in
time O

(
n2R(k,l)+max{k,l}), where R(k, l) denotes the Ramsey number of k and l.

Theorem 6. The STABLE-M1, STABLE-M2, and STABLE-M3 problems are solvable in polynomial time.

PROOF. Let Π ∈ {M1,M2,M3}. All three problems ask to partition the vertices of the input graph G into
one independent set V1, and a co-bipartite graph V′1 (consisting of two cliques V2 and V3). By Theorem 5,
there are only polynomially many such partitions of V(G) and all of them can be found in polynomial time.
For each such partition, we test whether the co-bipartite subgraph of G induced by V′1 is in Π. This yields a
polynomial-time algorithm. �

The following two theorems are proved in a similar way to how Theorem 4 was proved in [5].

Theorem 7. The STABLE-M4 problem is solvable in polynomial time.

PROOF. We rephrase the problem as: given a graph G, decide whether the vertices of G can be partitioned
into three sets V1, V2, V3 such that V3 is a clique, V1 and V2 are independent sets and every vertex in V2 has
at most one neighbour in V3 and vice-versa.

Let G be the input graph. By Theorem 5, we can find, in polynomial time, the collection P of all partitions
of the vertex set of G into a clique C and a set X such that G[X] contains no clique of size three. Note that if
G admits a STABLE-M4 partition V1, V2, V3, then the partition C = V3, X = V1 ∪V2 is a partition in P . Thus
to solve the problem, we try all partitions C, X in P by setting V3 = C and testing whether X can be split
into V1, V2 so that V1, V2, V3 is a STABLE-M4 partition of G.

Let C, X be a partition from P . We construct the following instance I of 2SAT.

(i) Create a variable xv for every vertex v ∈ X,

(ii) for every edge uv ∈ E(G[X]), add the clauses (xu ∨ xv) and (xu ∨ xv),

(iii) for every pair of vertices u, v ∈ X with a common neighbour in C, add the clause (xu ∨ xv), and

(iv) for every vertex v ∈ X such that v has at least two neighbours in C, add the clauses (xv ∨ a) and
(xv ∨ a), where a is a new variable.

We claim that I has a satisfying assignment if and only if G admits a STABLE-M4 partition V1, V2, V3 such
that V3 = C and V1 ∪V2 = X.

Suppose that the instance I has a satisfying truth assignment ϕ. Namely, ϕ is a mapping from the
variables of I to {true, f alse} such that in every clause Cj, there is at least one literal that ϕ evaluates to true
(where the value ϕ(z) is defined as the negation of ϕ(z), for any variable z).

5

Define V1 = {v | ϕ(xv) = f alse} and V2 = {v | ϕ(xv) = true}. We claim that V1, V2, V3 is a STABLE-M4
partition of G. Indeed, by (ii), V1 and V2 are independent sets; by (iii), no two vertices in V2 have a common
neighbour in V3; and by (iv), every vertex from V2 has at most one neighbour in V3.

Conversely, let V1, V2, V3 be a STABLE-M4 partition of G where V3 = C. We define a truth assignment
for I as follows. We set ϕ(xv) = f alse if v ∈ V1 and ϕ(xv) = true if v ∈ V2. For each of the new variables
a defined in (iv) above, we set ϕ(a) = true. We claim that ϕ is a satisfying truth assignment for I . Indeed,
all clauses defined in (ii) are satisfied, since V1 and V2 are independent sets. Also, all clauses defined in (iii)
are satisfied since every vertex in V3 has at most one neighbour in V2. Similarly, every vertex in V2 has at
most one neighbour in V3 implying that all clauses in (iv) are satisfied. Thus I is satisfied by ϕ.

This concludes the proof. �

A similar argument works for the complementary class and results in the following theorem.

Theorem 8. The STABLE-M4 problem is solvable in polynomial time.

PROOF. Similarly to the proof of Theorem 7, we can rephrase the problem as: given a graph G, decide
whether the vertices of G can be partitioned into three sets V1, V2, V3 such that V3 is a clique, V1 and V2 are
independent sets and every vertex in V2 has at most one non-neighbour in V3 and vice-versa.

Again, defining P as before, we solve the problem by trying all partitions C, X in P . For each such
partition we set V3 = C and test whether X can be split into V1, V2 so that V1, V2, V3 is a STABLE-M4
partition of G.

Let G′C be the graph obtained from G by complementing (i.e. replacing edges by non-edges and vice
versa) the edges between C and X. Now G has a STABLE-M4 partition with V3 = C if and only if G′C has a
STABLE-M4 partition with V3 = C. Indeed, if V1 ∪ V2 is a partition of X, then G[C] is a clique and G[V1],
G[V2] are independent sets if and only if G′C[C] is a clique and G′C[V1], G′C[V2] are independent sets. Further,
each vertex in V2 (resp. V3) has at most one non-neighbour in V3 (resp. V2) in G if and only if it has at most
one neighbour in V3 (resp. V2) in G′C.

We now reduce the problem to an equivalent instance of 2SAT as in the proof of Theorem 7. This
concludes the proof. �

We are left with the case of the STABLE-M2 problem, which needs more work. We solve it in the following
section.

4.1. The STABLE-M2 problem
In this section, we prove that the STABLE-M2 problem is solvable in polynomial time. We cast the

problem for the complement and solve (in polynomial time) a more general version with lists as follows.
An instance of the problem is a pair (G, `) where G is a graph and ` : V(G)→ 2{1,2,3}. We say that `(v) is

the list belonging to the vertex v. For S ⊆ {1, 2, 3}, we let U`
S denote the set of vertices in G with `(v) = S.

Given an instance (G, `), we seek to partition V(G) into three cliques V1, V2, V3 such that

• each vertex in V2 has at most one neighbour in V3,
• each vertex in V3 has at most one neighbour in V2, and
• for all α ∈ {1, 2, 3}, each v ∈ Vα satisfies α ∈ `(v).

If such a partition exists, we call it a solution for (G, `). Note that if the list of some vertex is empty, then
there is no solution for the problem instance. Thus for the rest of the proof, we assume that U`

∅ = ∅.
To solve the problem, we consider several special cases and reduce the general case to these cases

in polynomial time. An important role in this process will be played by a particular reduction algorithm
(Algorithm 1) that applies a series of necessary conditions simplifying the problem, eventually leading to
a handful of special cases. We shall apply this reduction algorithm throughout all subsequent steps as
necessary. For instance, note that the test in Line 2 makes sure that each of the sets U`

{1}, U`
{2}, U`

{3} is a
clique, since otherwise there is clearly no solution for the input instance. Another test, in Line 5, is derived
from the fact that a vertex in V2 can only have one neighbour in V3 and vice versa; thus a vertex in U`

{1,2}

6

Algorithm 1: Reduction algorithm

Input: Instance (G, `) where G is a graph and `(v) : V(G)→ 2{1,2,3}

Output: A reduced instance (G, `)

1 for α ∈ {1, 2, 3} do
2 if for u ∈ U`

{α}, there exists v ∈ V(G) \ N(u) with α ∈ `(v) then

remove α from `(v) and goto 1

3 for (α, β) ∈
{
(2, 3), (3, 2)

}
do

4 if for u ∈ U`
{α}, there exists v ∈ N(u) ∩U`

{β} then
for all w ∈ N(u) \ {v} with β ∈ `(w), remove β from `(w)
for all w ∈ N(v) \ {u} with α ∈ `(w), remove α from `(w)
remove u, v from G and goto 1

5 if there exists v ∈ U`
{1,β} with |N(v) ∩U`

{α}| ≥ 2 then

remove β from `(v) and goto 1
6 if for u ∈ U`

{α}, there are v, w ∈ N(u) ∩U`
{1,β} where (N(v) \ N(w)) ∩U`

{1,α} 6= ∅ then

remove β from `(v) and goto 1
7 if for u ∈ U`

{α}, there are v, w ∈ N(u) ∩U`
{1,β} and x ∈ U`

{1,α} with v, w 6∈ N(x) then

remove 1 from `(x) and goto 1
8 if for u ∈ V(G) with 1 ∈ `(u), the set U`

{1,α} \ N(u) is not a clique then

remove 1 from `(u) and goto 1
9 if for u ∈ V(G) with β ∈ `(u), the subgraph G

[
N(u) ∩U`

{1,α}

]
contains an induced 4-cycle then

remove β from `(u) and goto 1
10 return (G, `)

can be safely moved to U`
{1} if it has more than one neighbour in U`

{3}. Other reduction rules follow from a
similar analysis of possible cases (a full explanation can be found in the proof below).

We say that an instance (G, `) is reduced, if it is the result of Algorithm 1. We have the following claim.

Lemma 9. Let (G, `) be an instance and let (G′, `′) be the result of applying Algorithm 1 to (G, `). Then there
exists a solution for (G, `) if and only if there exists a solution for (G′, `′).

PROOF. Note that if x ∈ U`
{i} for some i ∈ {1, 2, 3}, then in any solution (V1, V2, V3) of the instance, we have

x ∈ Vi. Using this we justify the reductions rules as follows.

Line 2: Let α ∈ {1, 2, 3}. Since Vα must be a clique in any solution, if u ∈ U`
{α} and u, v are not adjacent,

then v 6∈ Vα for any solution for (G, `).
In the remainder of the proof, we have α = 2 and β = 3, or α = 3 and β = 2.

Line 4: If u, v are adjacent for some u ∈ U`
{α} and v ∈ U`

{β}, then in any valid solution, these must be
two matched vertices of V2 and V3. In this case v must be the unique neighbour of u in Vβ and u must
be the unique neighbour of v in Vα. We can therefore remove either α or β from the list of each vertex in
N(u)∪N(v) \ {u, v}, as appropriate. We then remove u and v from G. The resulting instance has a solution
if and only if the original one does.

Line 5: In any solution, if v ∈ Vβ, then v can have at most one neighbour in Vα.

Line 6: Suppose u ∈ U`
{α}, such that v, w ∈ N(u) ∩U`

{1,β} and z ∈ (N(v) \ N(w)) ∩U`
{1,α}. If there were a

solution in which v ∈ Vβ, then since u ∈ Vα and every vertex in Vα can have at most one neighbour in Vβ

7

and vice versa, we must have w, z ∈ V1. But this is impossible, since w, z are not adjacent. This contradiction
implies that v cannot be in Vβ.

Line 7: Suppose u ∈ U`
{α}, x ∈ U`

{1,α} and v, w ∈ (N(u) \ N(x)) ∩U`
{1,β}. Then in any solution we must

have u ∈ Vα. Since u can have at most one neighbour in Vβ, at least one of v, w must be in V1. But V1 is a
clique and v, w are nonadjacent to x. Thus x 6∈ V1.
Line 8: Suppose u ∈ V(G) with 1 ∈ `(u) and v, w ∈ U`

{1,α} \ N(u) with v, w non-adjacent. Since for any
solution, Vi must be a clique for i ∈ {1, 2, 3}, exactly one of v, w must be in V1 and the other in Vα. But u is
non-adjacent to both v and w, so u 6∈ V1.
Line 9: Suppose β ∈ `(u). In any solution, if u ∈ Vβ then N(u) ∩ V1 must be a clique and u can have at
most one neighbour in Vα. The 4-cycle is neither a clique, nor is it partitionable into a clique and a single
vertex. Thus if a 4-cycle is an induced subgraph of G[N(u) ∩U`

{1,α}], then any solution must satisfy u 6∈ Vβ.
This completes all the reduction rules and the claim follows. �

Note that Algorithm 1 has polynomial running time. This allows us to assume that the instance we
consider is always reduced. (If not, we use Algorithm 1 to produce an equivalent reduced instance.)

Assuming this, we consider some special cases of the problem, which we will later use as steps in finding
a solution for the general problem.

Lemma 10. If there exists a solution (V1, V2, V3) for the reduced instance (G, `), such that there is no edge
between a vertex in V2 and a vertex in V3, it can be found in polynomial time.

PROOF. This amounts to finding a partition of G into an independent set and a complete bipartite graph, in
a way that respects the lists of the vertices. This can been solved in polynomial time [9]. �

Lemma 11. If U`
{1,2,3} = U`

{2,3} = ∅, and U`
{1,2} = ∅ or U`

{1,3} = ∅, and the instance is reduced, the problem
can be solved in polynomial time.

PROOF. We may assume by symmetry that U`
{1,3} = ∅ and we reduce the problem to an instance of 2SAT

constructed as follows.
• For each vertex x ∈ U`

{1,2}, introduce a new variable vx.

• For all z ∈ U`
{3} and all x, y ∈ N(z) ∩U`

{1,2}, add the clause (¬vx ∨ ¬vy).

• For all x, y ∈ U`
{1,2} with xy 6∈ E(G), add the clauses (vx ∨ vy), (¬vx ∨ ¬vy).

Since (G, `) is a reduced instance, it has a solution if and only if the above instance of 2SAT is satisfiable.
In particular, if ϕ is a satisfying assignment, the following sets (V1, V2, V3) form a solution for (G, `).

V1 = U`
{1} ∪ {x | ϕ(vx) = f alse} V2 = U`

{2} ∪
(
U`
{1,2} \V1

)
V3 = U`

{3} �

Lemma 12. If U`
{1,2,3} = U`

{2,3} = ∅ and U`
{1,2}, U`

{1,3} are cliques of G, and the instance is reduced, the
problem can be solved in polynomial time.

PROOF. We show that the following is a solution for (G, `).

V1 = U`
{1} ∪ U`

{1,2} ∪
⋃

u∈U`
{2}

|N(u)∩U`
{1,3} |≥2

(
N(u) ∩U`

{1,3}

)
V2 = U`

{2} V3 = U`
{3} ∪

(
U`
{1,3} \V1

)

Indeed, note that the instance (G, `) is reduced. By Line 2 of Algorithm 1 and the fact that U`
{1,3} is a

clique, we conclude that V2 and V3 must be cliques. By Line 4 of Algorithm 1 and the definition of V1 and
V3, every vertex in V2 has at most one neighbour in V3. By Lines 4 and 5 of Algorithm 1, each vertex of V3
has at most one neighbour in V2. By Line 2 of Algorithm 1 and since U`

{1,2}, U`
{1,3} are cliques, we need only

verify that every vertex in V1 ∩U`
{1,2} is adjacent to every vertex in V1 ∩U`

{1,3}. We therefore assume that
8

these sets are not empty. Let u ∈ U`
{2} and v, w ∈ N(u) ∩U`

{1,3}. By Line 7 of Algorithm 1, any vertex in

U`
{1,2} must be adjacent to at least one of v or w. But by Line 6 of Algorithm 1, the vertices v, w have the

same neighbourhood in U`
{1,2}. Thus every vertex of U`

{1,2} must be adjacent to every vertex of V1 ∩U`
{1,3}.

We therefore conclude that V1 is indeed a clique. �

We can now generalise Lemmas 11 and 12 as follows.

Lemma 13. If U`
{1,2,3} = U`

{2,3} = ∅, and the problem instance is reduced, the problem can be solved in
polynomial time.

PROOF. Assume that U`
{1,2,3} = U`

{2,3} = ∅, but Lemma 11 does not apply. Thus U`
{1,2} 6= ∅ and U`

{1,3} 6= ∅.

We fix any u ∈ U`
{1,2}. Then we either do nothing, or choose w ∈ N(u) ∩U`

{1,3} and set `(w) = {3}.
After that, we remove 3 from `(v) for each v ∈ N(u) that belongs to a non-trivial (≥ 2 vertices) connected
component of G

[
U`
{1,3}

]
unless that component contains w (if w exists). We then apply Algorithm 1 to

ensure that we have a reduced instance.
If after these modifications U`

{1,3} is still non-empty, we similarly fix u′ ∈ U`
{1,3}, do nothing or set

`(w′) = {2} for some w′ ∈ N(u′) ∩U`
{1,2}, and then remove 2 from `(v) for each v ∈ N(u′) ∩U`

{1,2} in a

non-trivial component of G
[
U`
{1,2}

]
unless that component contains w′ (if w′ exists). Afterwards, we again

apply Algorithm 1 to ensure that we have a reduced instance.
We try all possible choices for w and w′, creating O(n2) instances. We show that the initial instance has

a solution if and only if (at least) one of these O(n2) instances has. After that, we will show that each of
these O(n2) instances can be solved in polynomial time, which will conclude the proof.

Claim 1. (G, `) has a solution if and only if (at least) one of the O(n2) instances has a solution.

Clearly, if one of the O(n2) instances has a solution, then this is also a solution for (G, `), since during the
construction of the instances, we only remove elements from lists.

Conversely, let V1, V2, V3 be a solution for (G, `). Let H = G[U`
{1,3}], i.e. H denotes the subgraph of G

induced by U`
{1,3}, and consider the vertex u ∈ U`

{1,2} that we fix.

Case (i): Suppose that u ∈ V1. There are two possibilities to consider. First, suppose that there exists a
neighbour of u that is in V3 and also in some non-trivial connected component of H. Consider the instance
where we choose w to be this neighbour. (We shall henceforth refer to it as the “modified” instance.) In this
instance, we remove 3 from each neighbour of u in V(H) = U`

{1,3} that belongs to a non-trivial connected

component of H unless that component contains w.
We claim that each such neighbour v belongs to V1. Suppose otherwise. Then v belongs to V3, since

`(v) = {1, 3}. Recall that v is in a non-trivial connected component of H. Thus it has a neighbour z in H.
We conclude that z is non-adjacent to v in H, and hence, in G. If z is also non-adjacent to u, then z can
be neither in V1 nor in V3, as these are both cliques. But then V1, V2, V3 cannot be a solution for (G, `) as
`(z) = {1, 3}. So, we conclude that z is adjacent to u.

Now, recall that w is also in a non-trivial connected component of H. So, w has a neighbour x in this
component, and we conclude that xw 6∈ E(G). This implies ux ∈ E(G) as otherwise V1, V2, V3 is not a
solution. But now x, z, w, v induce a 4-cycle in the neighbourhood of u, which is impossible by Line 9 of
Algorithm 1. (For this, recall that (G, `) is a reduced instance and that the connected component of H
containing w and x is different from the one containing v and z.)

This proves that V1, V2, V3 is also a solution to the modified instance. As this is one of the O(n2) instances,
we are done.

So, we may assume that each neighbour of u in V3 ∩ V(H) is itself a connected component (isolated
vertex) of H. In this case, we consider the instance where we do not choose w (referred to as the “modified”
instance). In this instance, we remove 3 from each neighbour of u in V(H) that belongs to a non-trivial

9

connected component of H. By our assumption, this does not modify the lists of those neighbours of u that
are in V3 ∩V(H). Thus V1, V2, V3 is a solution to the modified instance, and we are done.

Case (ii): Suppose that u ∈ V2. If u has a neighbour in V3 ∩V(H), consider the instance where w is chosen
to be this neighbour (referred to as the “modified” instance). In this instance, we remove 3 from each
neighbour of u in a non-trivial connected component of H unless that component contains w. Clearly, any
such vertex v cannot belong to V3, since then u would have two neighbours in V3, which is impossible. Thus
V1, V2, V3 is also a solution to the modified instance, and we are done.

Finally, suppose that u has no neighbour in V3 ∩ V(H), and consider the instance where we do not
choose w. Again, we remove 3 from every neighbour of u in a non-trivial component of H, and conclude
that V1, V2, V3 is a solution to this modified instance, since we assume that N(u) ∩ V(H) ∩ V3 = ∅. This
completes all cases.

This proves that one of the choices for w must succeed if (G, `) has a solution. By a symmetric argument,
it follows that, for an appropriate choice of w, one of the choices for w′ (if at all we consider w′) must also
succeed. This concludes the proof of Claim 1.

Now, we explain how to solve each of the O(n2) instances in polynomial time. Consider one of the O(n2)
instances (G+, `+). We constructed this instance from the initial instance (G, `), by fixing a vertex u and
choosing w (or not), and then fixing a vertex u′ (if possible) and choosing w′ (or not). We also reduced this
instance using Algorithm 1. We now prove that the sets U`+

{1,2} and U`+

{1,3} are either both cliques of G+, or

one them is empty. In other words, we show that Lemma 11 or 12 can be applied to the instance (G+, `+).

Claim 2. U`+

{1,2} and U`+

{1,3} are both cliques of G+, or one of U`+

{1,2}, U`+

{1,3} is empty.

If one of U`+

{1,2}, U`+

{1,3} is empty, we are done. So we may assume that both U`+

{1,2} and U`+

{1,3} are non-empty.

For contradiction, assume first that U`+

{1,3} contains non-adjacent vertices v, v′. As `+ is a restriction of ` and

since U`
{1,2,3} = ∅, we conclude that v, v′ are also vertices in U`

{1,3}. Again, let H denote G[U`
{1,3}].

First, we observe that u is adjacent to at least one of v, v′. Indeed, if u is non-adjacent to both v and v′,
then 1 was removed from `(u) in Line 8 of Algorithm 1 (recall that (G, `) is a reduced instance). This is
impossible as `(u) = {1, 2}. By symmetry, we shall assume that u is adjacent to v.

Now, if w was not chosen when constructing (G+, `+), then 3 was removed from all neighbours of u in
non-trivial connected components of H. One of these components contains both v and v′ as they are non-
adjacent, and so 3 was removed from `(v) when constructing `+ (recall that we assume that u is adjacent
to v). However, this is impossible, since `+(v) = {1, 3}. We similarly arrive at a contradiction when w is
chosen, but it is not a vertex of the connected component of H containing v. So we conclude that w was
chosen from the connected component of H containing v. But now, we have that either v = w, or, since
(G+, `+) is reduced, 1 or 3 was removed from `(v) in Line 2 at some point when running Algorithm 1 to
produce the instance (G+, `+). This is, of course, impossible as `(w) = {3} and `+(v) = {1, 3}. This
concludes the argument for U`+

{1,3}.

The argument for U`+

{1,2} is similar, using u′ and w′. For this, note that u′ exists, since we assume that

U`+

{1,3} is non-empty. This concludes the proof of Claim 2.

In conclusion, we deduce that each of the O(n2) instances can be decided in polynomial time (by Lemma
11 or 12). Thus, by Claim 1, the initial instance can be solved in polynomial time as required. �

We are finally ready to discuss the general case and prove the main theorem of this section.

Theorem 14. The STABLE-M2 problem is solvable in polynomial time.

PROOF. First, we test whether or not we are in the situation of Lemma 10. If so, we find a solution for
(G, `) using [9]. If not, we conclude that if there is a solution (V1, V2, V3) for (G, `), then there must exist

10

u ∈ V2 and v ∈ V3 with uv ∈ E(G). We try all possible choices for such a pair u, v. This reduces the problem
to solving O(n2) separate instances. For each such choice u, v, we set `(u) = {2}, `(v) = {3}, and run
Algorithm 1. If the list of some vertex becomes empty, we reject this choice of u, v. Otherwise, we observe
that the resulting reduced instance (G′, `′) satisfies U`′

{1,2,3} = U`′
{2,3} = ∅. So we can apply Lemma 13 to

(G′, `′), which determines in polynomial time if there is a solution for (G, `). This concludes the proof. �

We close this section by emphasising that the above algorithm actually solves the more general list version
of the problem where each vertex carries a list `(v) such that v can only be assigned to Vα where α ∈ `(v).
An analogous extension to solving the list version is easily possible for all the other polynomial cases we
described in Theorems 4, 6, and 7.

5. Restricted Minimal Factorial Properties

First, we briefly examine the polynomial-time cases. Using essentially the same arguments as in the proof
of Theorem 6, we obtain the following theorem.

Theorem 15. The STABLE-MS
1 and STABLE-MS

2 problems are solvable in polynomial time.

All the remaining cases are hard. We discuss them in separate claims. All the subsequent proofs will be
essentially along the same lines and based on the following useful lemma.

The problem ONE-IN-THREE-3SAT asks to find an assignment of truth values to variables of a 3-CNF
formula (conjunction of 3-literal disjunctions = clauses) such that in every clause exactly one of the three
literals is true. The problem is well-known to be NP-complete [10].

Lemma 16. Any non-empty instance of ONE-IN-THREE-3SAT can be transformed in polynomial time to an
equivalent instance of ONE-IN-THREE-3SAT such that

(i) There is no clause of the form (X∨X∨Y) or (X∨X∨Y) where X, Y are (not necessarily distinct) literals.
(ii) If X appears in some clause, then X also appears in some clause.

(iii) Every literal appears at least twice in the instance.
(iv) There are at least 4 clauses and at least 4 variables in the instance.

PROOF. Apply the following steps in order. First, for each clause of the form (X ∨ X ∨ Y), replace it by
the clauses (u ∨ v ∨ X), (u ∨ v ∨ X), (w ∨ z ∨ Y), (w ∨ z ∨ Y), where u, v, w, z are new variables. Next,
for each clause of the form (X ∨ X ∨ Y), replace it by the clauses (u ∨ v ∨ Y), (u ∨ v ∨ Y), where u, v are
new variables. Then, for each literal X, add the clauses (u ∨ v ∨ X), (u ∨ w ∨ X), (v ∨ w ∨ z), (v ∨ w ∨ z),
(v∨w∨ z), where u, v, w, z are new variables. Note that since the original instance was non-empty, the new
instance must now have at least 4 clauses and at least 4 variables. Finally, make a copy of each clause, i.e.
make each clause appear twice in the instance.

It is easy to see that the instance produced in this way is equivalent to the original instance and satisfies
all the conditions of the lemma. �

Theorem 17. The STABLE-MS
4 problem is NP-complete.

PROOF. We can rephrase the problem as follows: given a graph G, decide whether the vertices of G can
be partitioned into 3 sets V1, V2, V3 such that V3 is a clique, V1 and V2 are independent sets and the edges
between V2 and V3 form a perfect matching.

The proof proceeds by reduction from ONE-IN-THREE-3SAT. Consider an instance I of the problem,
namely the instance consists of m clauses C1, . . . , Cm containing variables v1, . . . , vn. We may assume it
satisfies the properties listed in Lemma 16. Let Ji denote the set of indices j such that vi appears in Cj. Let
Ji denote the indices j such that vi appears in Cj.

For the instance I , we construct the graph GI as follows. First, we create a complete graph on vertices
y1, . . . , ym. Then for every occurrence of a variable vi (resp. vi) in a clause Cj, we add a new vertex xi,j

11

(resp. xi,j) and we add an edge between yj and xi,j (resp. xi,j). Finally, we add an edge between xi,j and xi,`

for all i ∈ {1, . . . , n}, all j ∈ Ji and all ` ∈ Ji.
We prove that GI admits a STABLE-MS

4 partition if and only if I has a satisfying truth assignment (as an
instance of ONE-IN-THREE-3SAT).

Suppose that the instance I has a satisfying truth assignment ϕ. In other words, ϕ is a mapping from
{v1, . . . , vn} to {true, f alse} such that for every clause Cj, ϕ evaluates exactly one of the literals in Cj to true,
where ϕ(vi) is defined as the negation of ϕ(vi). Let us define a partition of V(GI) as follows:

V1 =
{

xi,j

∣∣∣ j ∈ Ji ∧ ϕ(vi) = f alse
}
∪
{

xi,j

∣∣∣ j ∈ Ji ∧ ϕ(vi) = true
}

,

V2 =
{

xi,j

∣∣∣ j ∈ Ji ∧ ϕ(vi) = true
}
∪
{

xi,j

∣∣∣ j ∈ Ji ∧ ϕ(vi) = f alse
}

,

V3 =
{

yj

∣∣∣ j ∈ {1, . . . , m}
}

.

It is not difficult to verify that V1 and V2 are independent sets of GI , that V3 is a clique, and that the
edges between V2 and V3 form a perfect matching. Indeed, each vertex yj in V3 is adjacent to a unique
vertex xi,j or xi,j in V2, namely the one for which vi, resp. vi is the literal of Cj that ϕ evaluates to true. Thus
GI admits a STABLE-MS

4 partition as required.
Conversely, suppose that GI admits a STABLE-MS

4 partition. In other words, there exists a partition of
V(GI) into three sets V1, V2, V3 such that V1, V2 are independent sets, V3 is a clique, and the edges between
V2 and V3 form a perfect matching.

First, we show that we must have V3 = {yj | j ∈ {1, . . . , m}}. By Lemma 16, there are at least four yj’s.
Thus, since V1 and V2 are independent sets, V3 must contain at least two yj’s. This implies that V3 contains
no xi,j or xi,j, since each has at most one neighbour in {y1, . . . , ym} and V3 is a clique. It also implies that
if yj ∈ V2 for some j, then yj has at least 2 neighbours in V3, which is a contradiction. Finally, suppose that
yj ∈ V1 for some j. Consider a neighbour z 6∈ {y1, . . . , ym} of yj. (Note that z is xi,j or xi,j for some i and
there are exactly three such vertices). Then z is not in V3, since V3 contains no xi,j or xi,j. Also, z cannot be
in V1, since V1 is independent. Thus z must be in V2. But z has a unique neighbour in {y1, . . . , ym}, namely
yj, and hence, z does not have a neighbour in V3, a contradiction. This proves that V3 = {y1, . . . , ym}.

Now, we define the following truth assignment ϕ : {v1, . . . , vn} → {true, f alse}. For each i ∈ {1, . . . , n},
we set ϕ(vi) = true if xi,j ∈ V2 for some j, and set ϕ(vi) = f alse otherwise. We prove that ϕ is a satisfying
truth assignment for the instance I , which will conclude the proof.

Using the assignment ϕ, we prove that

V1 =
{

xi,j

∣∣∣ j ∈ Ji ∧ ϕ(vi) = f alse
}
∪
{

xi,j

∣∣∣ j ∈ Ji ∧ ϕ(vi) = true},

V2 =
{

xi,j

∣∣∣ j ∈ Ji ∧ ϕ(vi) = true
}
∪
{

xi,j

∣∣∣ j ∈ Ji ∧ ϕ(vi) = f alse
}

.

To show this, recall that for each i ∈ {1, . . . , n}, every xi,j is adjacent to every xi,` where j ∈ Ji and
` ∈ Ji. Thus if ϕ(vi) = true, then xi,j ∈ V2 for some j which implies xi,` ∈ V1 for all ` ∈ Ji, since V2 is an
independent set. Therefore, xi,j ∈ V2 for all j ∈ Ji, since V1 is an independent set. Similarly, if ϕ(vi) = f alse,
then xi,j ∈ V1 for all j ∈ Ji, and hence, xi,` ∈ V2 for all ` ∈ Ji.

Now, consider a clause Cj. Recall that yj ∈ V3, and hence, it has exactly one neighbour xi,j or xi,j in
V2 corresponding to the literal vi, resp. vi in Cj, which ϕ evaluates to true by the above. So, all other
neighbours xi′ ,j or xi′ ,j of yj belong to V1 and thus correspond to literals vi′ , resp. vi′ which ϕ evaluates to
f alse. This proves that Cj is satisfied by ϕ, and thus, proves that ϕ is a satisfying truth assignment.

This concludes the proof. �

Similar constructions also work for the following two cases.

Theorem 18. The STABLE-MS
4 problem is NP-complete.

12

PROOF. Again, we rephrase the problem as: given a graph G, decide whether the vertices of G can be
partitioned into 3 sets V1, V2, V3 such that V3 is a clique, V1 and V2 are independent sets and the edges
between V2 and V3 form the complement of a perfect matching.

The proof will now follow essentially the same steps as the proof of Theorem 17. We proceed by reduction
from ONE-IN-THREE-3SAT.

Consider an instance I of the problem, namely the instance consists of m clauses C1, . . . , Cm containing
variables v1, . . . , vn. Again, we may assume it satisfies the properties listed in Lemma 16. We define Ji to be
the set of indices j such that vi appears in Cj, and define Ji to be the set of indices j such that vi appears in Cj.

For the instance I , consider the graph GI constructed in the proof of Theorem 17. Let G+
I be the graph

obtained from GI by complementing the edges between {y1, . . . , ym} and the rest of the graph. Namely, for
each i ∈ {1, . . . , m}, the vertex yi is adjacent to z 6∈ {y1, . . . , ym} in G+

I if and only if yi is not adjacent to z
in GI . All other edges remain the same.

We prove that G+
I admits a STABLE-MS

4 partition if and only if I has a satisfying truth assignment (as an
instance of ONE-IN-THREE-3SAT).

For the forward direction, we note that, by the proof of Theorem 17, if GI admits a STABLE-MS
4 partition

V1, V2, V3, then V3 = {y1, . . . , ym}. Thus, this is also a STABLE-MS
4 partition of G+

I . This proves that if I has

a satisfying truth assignment, then G+
I admits a STABLE-MS

4 partition.

Conversely, suppose that G+
I admits a STABLE-MS

4 partition. Namely, let V1, V2, V3 be a partition of
V(GI) such that V1, V2 are independent sets, V3 is a clique, and the edges between V2 and V3 form the
complement of a perfect matching.

We shall prove that V3 = {y1, . . . , ym}. By the construction of G+
I , this will imply that V1, V2, V3 is also a

STABLE-MS
4 partition of GI . Thus, by the proof of Theorem 17, this will allow us to conclude that I has a

satisfying truth assignment.
Consider a vertex yj. By Lemma 16, there is a variable vi such that neither vi nor vi appears in the

clause Cj. Moreover, vi appears as a literal in at least two clauses, say Cj1 and Cj2 , and vi appears in two
other clauses, say Cj3 and Cj4 . This implies that G+

I contains vertices xi,j1 , xi,j2 , xi,j3 , xi,j4 which induce a
4-cycle and are all adjacent to yj. Suppose that yj ∈ V1. Since V1 is an independent set, we conclude
that xi,j1 , xi,j2 , xi,j3 , xi,j4 ∈ V2 ∪ V3. However, this contradicts the fact that G+

I [V2 ∪ V3] is a split graph.
Thus yj 6∈ V1. By the same argument, yj 6∈ V2. This proves that V3 ⊇ {y1, . . . , ym}. Furthermore, note
that V3 contains no xi,j or xi,j, since each has a non-neighbour in {y1, . . . , ym} and V3 is a clique. So
V3 = {y1, . . . , ym} as promised.

This concludes the proof. �

Theorem 19. The STABLE-MS
2 problem is NP-complete.

PROOF. Once again we rephrase the problem as: given a graph G, decide if we can partition its vertex set
into 3 independent sets V1, V2, V3, such that the edges between V2 and V3 form the complement of a perfect
matching. As before, we reduce from ONE-IN-THREE-3SAT.

Consider an instance I of the problem, namely the instance consists of m clauses C1, . . . , Cm containing
variables v1, . . . , vn. Again, we may assume it satisfies the properties listed in Lemma 16. We define Ji to be
the set of indices j such that vi appears in Cj, and define Ji to be the set of indices j such that vi appears in Cj.

For the instance I , consider the graph G+
I constructed in the proof of Theorem 18. Construct the graph

G∗I from G+
I by removing all edges of the form yiyj where i, j ∈ {1, . . . , m} (effectively replacing the clique

on {y1, . . . , ym} by an independent set). All other edges remain the same.
We claim that G∗I has a STABLE-MS

2 partition if and only if I has a satisfying truth assignment (as an
instance of ONE-IN-THREE-3SAT).

For the forward direction, we note that, by the proof of Theorem 18, if G+
I admits a STABLE-MS

4 partition
V1, V2, V3, then V3 = {y1, . . . , ym}. Thus, this is also a STABLE-MS

2 partition of G∗I . This proves that if I has
a satisfying truth assignment, then G∗I admits a STABLE-MS

2 partition.

13

Now suppose, conversely, that G∗I admits a STABLE-MS
2 partition. In other words, V(G∗I) can be

partitioned into three independent sets V1, V2, V3, such that the edges between V2 and V3 form the
complement of a perfect matching.

First, observe that if three vertices a, b, c ∈ V2 ∪V3 form an independent set then either all of them must
be contained in V2 or all of them must be contained in V3. Indeed, suppose, without loss of generality, that
a, b ∈ V2 and c ∈ V3, then c would have two non-neighbours in V2, contradicting the fact that the edges
between V2 and V3 form the complement of a perfect matching.

Next, we show that yj ∈ V2 for all j ∈ {1, . . . , m} or yj ∈ V3 for all j ∈ {1, . . . , m}. By the above
observation and Lemma 16, we need only show that yj 6∈ V1. Suppose, for contradiction, that yj ∈ V1. By
Lemma 16, there must be vertices xi1,j1 , xi2,j2 , xi3,j3 and xi1,j4 (with i1, i2, i3 pairwise distinct), none of which
correspond to literals in the clause Cj (i.e. j 6∈ {j1, j2, j3, j4}). Since they do not correspond to these literals,
yj must be adjacent to all of these vertices, so xi1,j1 , xi2,j2 , xi3,j3 , xi1,j4 ∈ V2 ∪ V3. But xi1,j1 , xi2,j2 , xi3,j3 and
xi2,j2 , xi3,j3 , xi1,j4 are both independent sets of size 3. Thus all four of these vertices must be members of the
same set Vi where i ∈ {2, 3}. But xi1,j1 and xi1,j4 are adjacent, contradicting the fact that V2 and V3 are
independent sets.

Hence, we may conclude, without loss of generality, that {y1, . . . , ym} ⊆ V3. Notice that, since each
vertex xi,j or xi,j corresponds to a unique occurrence of a literal in a unique clause in I , every vertex not of
the form yj has a neighbour in V3. Thus, since V3 is an independent set, V3 = {y1, . . . , ym}. Finally, note
that since V1, V2, V3 is a STABLE-MS

2 partition for G∗I and V3 = {y1, . . . , ym}, then by the construction of G∗I ,

it follows that V1, V2, V3 must also be a STABLE-MS
4 -partition of G+

I . Thus, by the proof of Theorem 18, the
instance I has a satisfying assignment.

This concludes the proof. �

6. Conclusion

We proved that the STABLE-Π problem is polynomial-time solvable for all subfactorial hereditary
properties Π and for seven of the nine minimal factorial hereditary properties. For Π =M1, the problem
is known to be NP-complete. This leaves one final open case, namely where Π is the class of chain graphs
M3. Clarifying the complexity status of this exception is a challenging research problem.

Acknowledgements

The authors would like to thank anonymous referees for their useful comments that helped improve the
presentation of the results.

Research supported by the Centre for Discrete Mathematics and its Applications (DIMAP), which is
partially funded by EPSRC award EP/D063191/1. The first author acknowledges support from ANR
project TODO ANR-09-EMER-010. The second and third author acknowledge support from EPSRC award
EP/I01795X/1.

References

[1] V.E. Alekseev, On lower layers of a lattice of hereditary classes of graphs (in russian), Diskretny̆ı Analiz i Issledovanie Operatsĭı,
Ser. 1 4 (1997) 3–12.

[2] V.E. Alekseev, A. Farrugia, V.V. Lozin, New results on generalized graph coloring, Discrete Mathematics and Theoretical Computer
Science 6 (2004) 215–222.

[3] J. Balogh, B. Bollobás, D. Weinreich, The speed of hereditary properties of graphs, Journal of Combinatorial Theory, Series B 79
(2000) 131–156.

[4] A. Brandstädt, P.L. Hammer, V.B. Le, V.V. Lozin, Bisplit graphs, Discrete Mathematics 299 (2005) 11–32.
[5] A. Brandstädt, V.B. Le, T. Szymczak, The complexity of some problems related to graph 3-colorability, Discrete Applied

Mathematics 89 (1998) 59–73.
[6] L. Cai, D. Corneil, A generalization of perfect graphs–i-perfect graphs, Journal of Graph Theory 23 (1996) 87–103.
[7] M. Demange, T. Ekim, D. de Werra, Partitioning cographs into cliques and stable sets, Discrete Optimization 2 (2005) 145–153.
[8] T. Ekim, J. Gimbel, Partitioning graphs into complete and empty graphs, Discrete Mathematics 309 (2009) 5849–5856.

14

[9] T. Feder, P. Hell, S. Klein, R. Motwani, List partitions, SIAM Journal on Discrete Mathematics 16 (2003) 449–478.
[10] M.R. Garey, D.S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness, W. H. Freeman, 1979.
[11] M.R. Garey, D.S. Johnson, L. Stockmeyer, Some simplified NP-complete graph problems, Theoretical Computer Science 1 (1976)

237–267.
[12] D.L. Grinstead, P.J. Slater, N.A. Sherwani, N.D. Holmes, Efficient edge domination problems in graphs, Information Processing

Letters 48 (1993) 221–228.
[13] P. Hell, S. Klein, L.T. Nogueira, F. Protti, Partitioning chordal graphs into independent sets and cliques, Discrete Applied

Mathematics 141 (2004) 185–194.
[14] C.T. Hoàng, V.B. Le, On P4-transversals of perfect graphs, Discrete Mathematics 216 (2000) 195–210.
[15] Y. Huang, Y. Chu, A note on the computational complexity of graph vertex partition, Discrete Applied Mathematics 155 (2007)

405–409.
[16] J. Kratochvil, I. Schiermeyer, On the computational complexity of (O, P)-partition problems, Discussiones Mathematicae Graph

Theory 17 (1997) 253–258.
[17] H.O. Le, V.B. Le, The NP-completeness of (1,r)-subcolorability of cubic graphs, Information Processing Letters 81 (2002) 157–162.
[18] V.V. Lozin, Between 2- and 3-colorability, Information Processing Letters 94 (2005) 179–182.
[19] N.V.R. Mahadev, U.N. Peled, Threshold Graphs and Related Topics, volume 56 of Annals of Discrete Mathematics, Elsevier, 1995.
[20] J. Stacho, On P4-transversals of chordal graphs, Discrete Mathematics 308 (2008) 5548–5554.
[21] M. Yannakakis, Node-deletion problems on bipartite graphs, SIAM Journal on Computing 10 (1981) 310–327.

15

