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Abstract

In this thesis, we study some fundamental problems in algorithmic graph theory. Most

natural problems in this area are hard from a computational point of view. However,

many applications demand that we do solve such problems, even if they are intractable.

There are a number of methods in which we can try to do this:

• We may use an approximation algorithm if we do not necessarily require the best

possible solution to a problem

• Heuristics can be applied and work well enough to be useful for many applications

• We can construct randomised algorithms for which the probability of failure is very

small

• We may parameterize the problem in some way which limits its complexity

In other cases, we may also have some information about the structure of the

instances of the problem we are trying to solve. If we are lucky, we may �nd that we

can exploit this extra structure to �nd e�cient ways to solve our problem. The question

which arises is �How far must we restrict the structure of our graph to be able to solve

our problem e�ciently?�

In this thesis we study a number of problems, such as Maximum Indepen-

dent Set, Maximum Induced Matching, Stable-Π, Efficient Edge Domina-

tion, Vertex Colouring and Dynamic Edge-Choosability. We try to solve prob-

lems on various hereditary classes of graphs and analyse the complexity of the resulting

problem, both from a classical and parameterized point of view.

viii



Chapter 1

Introduction

1.1 Introduction

Graphs are a very useful model for many real-world structures. Graph Theory has

applications to all sorts of scienti�c disciplines, including everything from the structure

of molecules in chemistry and physics, to analysing social networks in sociology.

With the development of the digital computer over the past 70 years, the �eld

of computer science has blossomed and grown exponentially. Graphs are ubiquitous in

the �eld of computer science and provide a natural framework with which to represent

various concepts such as the organisation of data or communication over networks.

Hand in hand with the rise of computer science has been the proliferation of

algorithmic graph theory, i.e. the study of how to solve various problems on graphs.

Unfortunately, most natural problems in this �eld cannot be solved in an e�cient manner.

However, we still need to be able to solve these problems. Many approaches have been

developed over the years to help us do this. For example:

• We may use an approximation algorithm if we do not necessarily require the best

possible solution to a problem

• Heuristics can be applied and work well enough to be useful for many applications

• We can construct randomised algorithms for which the probability of failure is very

small

• We may parameterize the problem in some way which limits its complexity

In other cases, we may have some extra information about the structure of the

instances of the problem which we will have to solve. If we are lucky, we may �nd that we
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can exploit this extra structure to �nd e�cient ways to solve our problem. The question

which arises is �How far must we restrict the structure of our graph to be able to solve

our problem e�ciently?�

In this thesis we explore the above question and try to give partial answers to

it for various problems and various de�nitions of what exactly it means to e�ciently

solve a problem. There are many problems in algorithmic graph theory that are very

complicated and very speci�c to their applications. In this thesis, we mostly focus on

problems that are in some sense �basic� in that they occur naturally in many di�erent

applications and as a result have been widely studied. Examples of such problems include

Maximum Independent Set and Vertex Colouring.

1.2 Basic De�nitions and Notation

A graph G consists of a vertex set V (G) and an edge set E(G). An edge in a graph

consists of an unordered pair {x, y} of distinct vertices of the graph and we will usually

denote this as xy. Unless stated otherwise, n denotes the number of vertices in G and

m denotes the number of edges. We say that two vertices x, y are adjacent if xy ∈ E(G)

and nonadjacent otherwise. All graphs in this thesis are �nite, undirected, without

loops or multiple edges. The neighbourhood N(v) of a vertex v is the set of all vertices

adjacent to v. The degree d(v) of a vertex v is the size of its neighbourhood. If X

is a set of vertices, we de�ne NX(v) = N(v) ∩ X to be the neighbourhood of v in X

i.e. the set of vertices in X which are adjacent to v. Similarly, if U,X is a set of

vertices, N(U) = ∪v∈UN(v) denotes the neighbourhood of U and NX(U) = ∪v∈UNX(v)

denotes the neighbourhood of U in X. Note that if two distinct vertices have the same

neighbourhood, they must be nonadjacent. The closed neighbourhood of a vertex x in a

graph G is NG[x] = NV (G)(x) ∪ {x}.
Two edges are incident if they share an end-vertex. They are linked if they are

either incident or are both incident to a common third edge (see Fig. 1.1). A graph is

d-regular if every vertex in the graph is of degree d. It is regular if it is d-regular for some

d.

a b c d e

Figure 1.1: The edge ab is incident with bc, but not with cd or de. It is linked with bc
and cd, but not with de.

Given two graphs G and H, it is customary to say that G is a subgraph of H if
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V (G) ⊆ V (H) and E(G) ⊆ E(H). We say that G is an induced subgraph of H if G is

a subgraph of H and E(G) = E(H) ∩ (V (G) × V (G)). If U is a set of vertices, G[U ]

denotes the subgraph of G induced by U , i.e. the graph with vertex set U and edge set

E(G) ∩ (U × U).

We say that a graph is empty or edgeless if it contains no edges. A set X of

vertices in a graph G is independent if G[X] is edgeless. Such a set is sometimes referred

to as a stable set. A set X is a clique if every vertex is X is adjacent to every other

vertex in X. A graph is bipartite if its vertex set can be partitioned into two sets, both of

which are independent. A graph is a split graph if its vertex set can be partitioned into

an independent set and a clique. The complement G of a graph G is the graph with the

same vertex set as G, but where an edge is present in G if and only if it is not present in

G. If G is a bipartite graph with vertex partition X ∪ Y , the bipartite complement of G

is the graph with the same vertex partition and with edge set (X × Y ) \ E(G).

For disjoint sets A,B ⊆ V (G), we say that A is complete to B if every vertex in

A is adjacent to every vertex in B, and that A is anticomplete to B if every vertex in A

is non-adjacent to every vertex in B.

A module in a graph G is a set M of vertices of G, such that every vertex in

V (G)\M is either adjacent to all vertices in M or none of them. A module is trivial if it

contains either all vertices of G, exactly one vertex of G or if it is empty, otherwise it is

non-trivial. A graph is said to be prime if it has no non-trivial modules. A module M is

maximal if there is no module M ′ such that M (M ′ 6= V (G). Note that if two modules

are disjoint, they must either be complete or anticomplete to each-other.

As usual, Kn, Cn and Pn denote the complete graph, the chordless cycle and

the chordless path on n vertices, respectively. Kn,m is the complete bipartite graph, also

known as a bi-clique, with parts of size n and m. Kn − e denotes the graph obtained

from the graph Kn by deleting a single edge. If X is a set of vertices in a graph G, G−X
denotes the graph G[V (G) \X].

For non-negative integers i, j, k, the graph Si,j,k denotes the tree formed by taking

3 paths of length i, j, k respectively and identifying the vertices at one end of each of the

paths. In other words, if i, j, k are positive integers, Si,j,k denotes a tree with exactly

three leaves, which are at distance i, j and k from the only vertex of degree 3 (see also

Figure 6.1). In particular, S1,1,1 = K1,3 is known as the claw, and S1,2,2 is sometimes

denoted by E, since this graph can be drawn as the capital letter E (see Figure 1.2).

H denotes the graph that can be drawn as the capital letter H (see Figure 1.2). The

graph obtained from a K1,4 by subdividing exactly one edge exactly once is called a cross.

Given two graphs G and G′, we write G+G′ to denote the disjoint union of G and G′.

3



In particular, mG is the disjoint union of m copies of G.

(a) H (b) E

Figure 1.2: The graphs H and E

The distance d(x, y) between two vertices x, y is the minimum length of a path

between them (or in�nity if no such path exists). A graph is connected if every pair of

vertices in the graph is connected by a path. For a graph G, the line graph of G, denoted

L(G), is the graph with vertex set E(G), where two vertices are adjacent in L(G) if and

only if the respective edges of G are incident (i.e. share an end-vertex). The square G2

of a graph G is the graph formed by connecting (with an edge) all pairs of vertices at

distance at most 2 in the original graph.

The independence number α(G) of a graph G is the size of a largest independent

set in G, while the clique number ω(G) is the size of a largest clique. A vertex cover is a

set of vertices containing at least one end-vertex of every edge in the graph. A matching

in a graph is a set of edges, no two of which are incident. An induced matching is a

matching such that no two vertices belonging to a di�erent edge of the matching are

adjacent. Equivalently, an induced matching is a 1-regular induced subgraph of a graph.

The minimum size of a vertex cover in a graph G is denoted ν(G). The maximum size of

a matching or induced matching in a graph G are denoted µ(G) and iµ(G), respectively.

A set of vertices D dominates a graph if every vertex not in D is adjacent to at least one

vertex of D.

We use R(r, s) to denote the Ramsey number, i.e. the minimum number n such

that every graph with at least n vertices contains either an independent set of size r or

a clique of size s. For a real number x, dxe denotes the smallest integer ≥ x.
The clique-width of a graph G is the minimum number of labels needed to con-

struct G using the following four operations:

(i) Creating a new vertex v with label i (denoted by i(v)).

(ii) Taking the disjoint union of two labelled graphs G and H (denoted by G⊕H).

(iii) Joining each vertex with label i to each vertex with label j (i 6= j, denoted by ηi,j).
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(iv) Renaming label i to j (denoted by ρi→j).

Every graph can be de�ned by an algebraic expression using these four operations. For

instance, an induced path on �ve consecutive vertices a, b, c, d, e has clique-width equal

to 3 and it can be de�ned as follows:

η3,2(3(e)⊕ ρ3→2(ρ2→1(η3,2(3(d)⊕ ρ3→2(ρ2→1(η3,2(3(c)⊕ η2,1(2(b)⊕ 1(a)))))))))

1.3 Hereditary Classes of Graphs

A graph property or class of graphs is a set of graphs which is closed under isomorphism.

A class of graphs is hereditary if if is closed under taking induced subgraphs.

IfM = {G1, G2, . . .} is a (not necessarily �nite) set of graphs, we say that a graph

G is M -free or (G1, G2, . . .)-free if no graph in M is an induced subgraph of G. If M

contains only a single graph H, for the sake of clarity, we sometimes omit the brackets

and say that G is H-free. The set of all M -free graphs is denoted Free(M). The set M

is called the set of forbidden induced subgraphs for the class of graphs Free(M). Clearly,

any class of the form Free(M) is hereditary. Conversely, if we have a hereditary class C
of graphs and let M be the set of graphs not in C, it is easy to see that C = Free(M).

A graph G is a minimal forbidden induced subgraph for a hereditary class X if

and only if G 6∈ X but every proper induced subgraph of G belongs to X (or alternatively,

the deletion of any vertex from G results in a graph that belongs to X). Let MFIS(X)

denote the set of all minimal forbidden induced subgraphs for a hereditary class X.

Theorem 1. For any hereditary class X, we have X = Free(MFIS(X)). Moreover,

MFIS(X) is the unique minimal set with this property.

Proof. First, suppose that G ∈ X. Then by de�nition all induced subgraphs of G belong

to X and hence no graph from MFIS(X) is an induced subgraph of G, since none of

them belongs to X. As a result, G ∈ Free(MFIS(X)), so X ⊆ Free(MFIS(X)).

Suppose now that G ∈ Free(MFIS(X)), and suppose, for contradiction, that

G 6∈ X. Let H be a minimal induced subgraph of G which is not in X, (it may

happen that H = G). But then H ∈ MFIS(X) contradicting the fact that G ∈
Free(MFIS(X)). This contradiction shows that G ∈ X and hence proves that

Free(MFIS(X)) ⊆ X.

To prove the uniqueness of the set MFIS(X), we will show that for any set N

such that X = Free(N) we have MFIS(X) ⊆ N . Assume this is not true and let H

be a graph in MFIS(X) \ N . By the minimality of the graph H, any proper induced

5



subgraph of H is in X, and hence is in Free(N). Together with the fact that H does

not belong to N , we conclude that H ∈ Free(N). Therefore H ∈ Free(MFIS(X)).

However, this contradicts the fact that H ∈MFIS(X), completing the proof. 2

When specifying the forbidden induced subgraph characterisation of a hereditary

class of graphs, we therefore normally only list the minimal ones. By similar arguments,

we can also use the forbidden induced subgraph characterisation to test if one hereditary

class contains another:

Theorem 2. Let X = Free(M) and Y = Free(N) be two hereditary classes. Then X

is a subclass of Y if and only if for every H ∈ N , there exists some G ∈M such that G

is an induced subgraph of H.

A vast multitude of hereditary graph classes has been studied in the literature (see

e.g. [Brandstädt et al., 1999]), both with �nite and in�nite minimal forbidden induced

subgraph characterisations. For example:

• Free(C3, C4, C5, . . .) is the class of forests

• Free(C3, C5, C7, . . .) is the class of bipartite graphs

• Free(C4, C5, 2K2) is the class of split graphs

• Free(P4) is the class of co-graphs

1.4 Introduction to Computational complexity

An algorithm runs in polynomial time if the number of elementary operations that the

algorithm carries out is bounded by a polynomial in the size of the input instance. The

class of problems which can be solved in polynomial time is usually denoted P .

Intuitively, we can solve a problem quickly if it can be solved by a polynomial-

time algorithm and we cannot solve the problem e�ciently if there is no polynomial-time

algorithm. This does not always transfer over to real life applications. Indeed there

are polynomial-time algorithms that would take hundreds of years to run even on small

problem instances and, conversely, there are problems solved every day for which it is

believed that no polynomial-time algorithm exists. However, saying that polynomial-time

algorithms are e�cient and other algorithms are not is a useful rule of thumb.

A decision problem is a yes-or-no question in some formal system. A decision

problem is said to be in the class NP if it has the property that when the answer is
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�yes�, a proof of this can be given and this proof can be veri�ed in polynomial time. An

example of such a problem is �Given an input graph G and an input integer k, does the

graph G contain an independent set of size k?� Indeed, this problem lies in NP since an

independent set of size k in G would constitute a proof.

To compare the hardness of solving problems, we introduce the idea of a reduction

from one problem to another. If P and Q are decision problems, a polynomial-time

algorithm A is a polynomial-time reduction from P to Q if it takes an instance x of

problem P as input and outputs an instance y of problem Q with the property that

P (x) = �yes� if and only if Q(y) = �yes.� A problem is said to be NP-complete if every

problem in NP has a polynomial-time reduction to this problem.

There is a large class of problems which have been shown to be NP-complete.

Indeed, many standard problems in algorithmic graph theory fall into this category. It

is widely assumed that P 6= NP , i.e. that NP-complete problems cannot be solved in

polynomial time. (The NP-complete problems are �polynomially equivalent� in the sense

that if any of them can be solved in polynomial time then they all can.) It should be noted

that if P 6= NP , then there are also in�nitely many intermediate levels of computational

complexity in between them.

One way of dealing with NP-complete problems comes from the notion of pa-

rameterized complexity. We introduce a parameter k and hope that this parameter will

somehow absorb all the �non-polynomial� behaviour in the problem. More formally, we

say that an instance of a parameterized problem is a pair (G, k), where G is an input for

the problem and k is a parameter assigning a natural number to each input. A param-

eterized problem is �xed-parameter tractable (fpt) if it can be solved in f(k)nO(1) time,

where n is the size of the input G and f(k) is a computable function depending only

on the value of the parameter k. We say that such an algorithm runs in fpt-time. We

usually think of the parameter as being �small� and �xed, while n tends to in�nity.

As for classical complexity, we have a parameterized notion of a reduction. If P

and Q are parameterized decision problems, an algorithm A is a �xed-parameter reduction

from P to Q if it takes an instance (x, k) of problem P as input and outputs an instance

(y, k′) of problem Q with the properties that P (x, k) = �yes� if and only if P (y, k′) =

�yes�, where k′ ≤ g(k) for some function g, whose value depends only on the parameter

k.

If an NP-complete problem is �xed-parameter tractable for the parameter k, in-

tuitively, we see that a reason the problem is NP-complete is because this parameter can

be large. Again, among parameterized problems, there are classes which are conjectured
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not to be �xed-parameter tractable. In fact, there is a whole hierarchy of such classes,

known as the W -hierarchy.

To help de�ne these classes, we introduce the Weighted Weft-t Depth-h

Circuit-SAT problem. This takes as input a boolean circuit C with a mixture of fan-in

at most 2 and unbounded fan-in gates. The number of unbounded fan-in gates along any

path from an input to the output is at most t and the total depth (both fan-in at most

2 and unbounded fan-in) is at most h. The problem asks whether C has a satisfying

assignment (one where the output is �True�) in which exactly k of the inputs are set to

�True.� For t ≥ 1, we de�neW [t] to be the class of parameterized problems that are �xed-

parameter reducible to Weighted Weft-t Depth-h Circuit-SAT for some �xed h

(depending only on the problem). W [0] is de�ned to be the class of problems solvable in

fpt-time. Again, a problem is W [t]-complete if every problem in W [t] is �xed-parameter

reducible to this problem.

An example of aW [1]-complete problem is �does the graph G contain an indepen-

dent set of size k?� An example of aW [2]-complete problem is �does the graph G contain

an dominating set of size k?� Most natural parameterized problems seem to belong to

either W [0],W [1] or W [2]. For more information on the W -hierarchy and parameter-

ized complexity in general, we refer the reader to [Downey and Fellows, 1999; Flum and

Grohe, 2006].

One technique for producing fpt algorithms is the use of kernelization. A kernel-

ization is an algorithm that takes an instance (G, k) of a problem and transforms it, in

polynomial time, to an instance (G′, k′) such that both k′ and the size of G′ are bounded

by a function of k. The output instance (G′, k′) is known as the kernel. In fact, a problem

is �xed-parameter tractable if and only if it has a kernelization.

A maximum matching in a graph G is equivalent to a maximum independent

set in L(G). However, while a maximum matching can be found in polynomial time

[Edmonds, 1965], �nding a maximum independent set of maximum size is NP-hard.

Typically, in the parameterized complexity setting, we parameterize the Maxi-

mum Independent Set problem by the solution size, and the problem is known to be

W[1]-hard under this parameterization (see e.g. [Downey and Fellows, 1999; Flum and

Grohe, 2006]). However, we show that if the problem is parameterized by the size of a

maximum matching in the input graph, the problem becomes �xed-parameter tractable.

Theorem 3. The Maximum Independent Set and Minimum Vertex Cover prob-

lem can be solved for graphs with n vertices and a maximum matching of size µ in time

f(µ)p(n), where f(µ) is a function of µ independent of n and p(n) is a polynomial in n
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independent of µ.

Proof. Finding a maximum independent set in a graph is equivalent to �nding a

minimum vertex cover, since X is a maximum independent set if and only if V (G) \X
is a minimum vertex cover. Since the Minimum Vertex Cover problem is �xed-

parameter tractable, it can be solved for a graph G with n vertices and a minimum

vertex cover of size ν in time f(ν)p(n), where f(ν) is a function independent of n and

p(n) is a polynomial independent of ν. Since ν ≤ 2µ [Lovász and Plummer, 1986], we

conclude that one can solve both the Minimum Vertex Cover and the Maximum

Independent Set problems in time bounded by f(2µ)p(n). 2

This result demonstrates that the choice of parameter is very important. If we

change the parameter, we can get a problem with completely di�erent complexity char-

acteristics.

1.5 Outline of Thesis

Part I

In Part I, we study the Maximum Independent Set Problem. This is the problem of

trying to �nd an independent set in a graph of maximum size.

In Chapter 2 we study augmenting graphs. We prove a Ramsey-type result on

classes of augmenting graphs. We then study a set of subclasses of P5-free graphs and

show that augmenting graphs can be used to solve Maximum Independent Set in

polynomial time in these classes.

In Chapter 3 we study the weighted version of the problem from the point of view

of parameterized complexity. We exhibit a number of classes in which the problem is

�xed-parameter tractable.

Chapter 4 deals with theMaximum Induced Matching problem. This is equiv-

alent to theMaximum Independent Set problem in L(G)2, the square of the line graph

of our input graph. We exhibit a number of classes where the problem is �xed-parameter

tractable and some where the problem is hard from the point of view of approximation

algorithms. We also exhibit a simple solution in the class of hypercubes.

Part II

In Part II, we deal with graph partition problems.
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Chapter 5 considers the Stable-Π problem. In this problem, rather than �nding

an independent set of maximum size, we try to �nd an independent set such that the

remainder of the graph (not in the independent set) obeys certain properties. More

precisely, for a class of graphs Π, the Stable-Π problem asks whether we can partition

the vertices of a graph into an independent set and a set which induces a graph in the class

Π. We show that for many hereditary classes, the problem can be solved in polynomial

time, as long as the class is small enough. We also demonstrate some other classes where

the problem is hard. Finally, we exhibit a new class of graphs, which is large in a certain

technical sense.

Chapter 6 deals with the Efficient Edge Domination problem. This is the

particular case of the Stable-Π problem where Π is the class of 1-regular graphs. This

problem is known to be NP-complete. We show that the problem is �xed-parameter

tractable with respect to two natural parameterizations. We then classify the (classical)

complexity of the problem in the class of F -free graphs for every graph F on at most 6

vertices.

Part III

In Part III, we consider colouring problems.

Chapter 7 considers the Vertex Colouring problem in various subclasses of

triangle-free graphs. Vertex Colouring is the problem of partitioning the vertices of a

graph into the minimum possible number of independent sets. While the decision version

of the problem is NP-complete on K3-free graphs, we �nd a number of subclasses where

the problem can be solved in polynomial time. In particular, we completely classify the

complexity of Vertex Colouring in (K3, F )-free graphs for any graph F on at most

6 vertices.

Chapter 8 considers a colouring problem which was introduced recently. We show

that, unusually for algorithmic graph problems, the Dynamic Edge-Choosability

problem can be completely solved in polynomial time for general graphs using a simple

algorithm.
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Part I

Maximum Independent Sets
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An independent set in a graph is a set of vertices, no two of which are adjacent.

There are a number of problems associated with this notion. The most important of

these is Maximum Independent Set. It �nds applications across various �elds, such

as information theory and computer vision.

In the decision version of this problem, we are given a graph G and an integer

k and have to determine whether or not the graph G has an independent set of size k.

There is also an optimisation version, in which we are asked to �nd an independent set

of maximum size. The maximum possible size of an independent set in a graph G is its

independence number α(G). One more version of the problem asks us to determine the

value of α(G). We shall use Maximum Independent Set to refer to the optimisation

version of the problem.

From a computational point of view Maximum Independent Set is a hard

problem, i.e. it is NP-hard. Moreover, it remains NP-hard under substantial restrictions,

for instance, for triangle-free graphs [Murphy, 1992] and for planar cubic graphs [Alimonti

and Kann, 1997]. The problem is also hard from a parameterized point of view. More

precisely it is W [1]-hard when parameterized by the solution size (see e.g. [Downey and

Fellows, 1999; Flum and Grohe, 2006]).

There are several main approaches to cope with intractability of computationally

hard problems:

1. Polynomial-time algorithms that solve the problem exactly for graphs in special

classes

2. Fixed-parameter tractable algorithms that solve the problem exactly for graphs in

special classes

3. Polynomial-time algorithms that provide approximate solutions

The third approach to the Maximum Independent Set problem (approximate

solutions) is not of much help, because a maximum independent set in a graph is hard

to approximate. Indeed, for any ε > 0, non-exact polynomial-time algorithms cannot

approximate the size of a maximum independent set within a factor of n1−ε [Håstad,

1999]. In this part of the thesis, we focus on the �rst two approaches, i.e. polynomial-

time and �xed-parameter tractable algorithms for graphs in special classes.

The problem has been shown to be solvable in polynomial time in many particular

classes of graphs, such as perfect graphs [Grötschel et al., 1993], claw-free graphs [Minty,

1980], and graphs of bounded clique-width [Courcelle et al., 2000].
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The solution for claw-free graphs extends the celebrated matching algorithm due

to Edmonds [1965] and exploits the idea of augmenting chains due to Berge [1957].

This idea was later developed into a general approach to the Maximum Independent

Set problem, known as the augmenting graph technique, and was applied to obtain

polynomial-time solutions in many restricted graph classes.

In Chapter 2, we �rst contribute to the theory of augmenting graphs by proving a

Ramsey-type result and then apply the technique to solve theMaximum Independent

Set problem in a particular family of subclasses of P5-free graphs. Our interest in

P5-free graphs is motivated by the fact that the complexity status of the Maximum

Independent Set problem in the class of P5-free graphs is unknown and P5 is the

unique smallest forbidden graph for which this question is open. On the other hand, it

is known that the problem can be solved in the class of P5-free graphs [Randerath and

Schiermeyer, 2010] in subexponential time.

In Chapter 3, we study parameterized algorithms for the Maximum Indepen-

dent Set problem in particular graph classes. There is very little existing literature on

this topic and we contribute several new results in this direction.

In addition to wide applicability of the Maximum Independent Set problem,

the importance of this problem is also caused by the fact that it is related to many other

problems in algorithmic graph theory. For example, if S is an independent set in G then

S is a clique in G and V (G) \ S is a vertex cover in G. Thus Maximum Independent

Set in a graph G is equivalent to Maximum Clique in G and Minimum Vertex

Cover in G.

Two other problems closely related to Maximum Independent Set are Max-

imum Matching and Maximum Induced Matching. Solving these problems for a

graph G is equivalent to solving Maximum Independent Set in the line graph L(G)

and its square L(G)2, respectively. However, while Maximum Matching can be solved

in linear time [Edmonds, 1965],Maximum Induced Matching is NP-hard, even for bi-

partite graphs of maximum degree 3 [Lozin, 2002b]. We discuss theMaximum Induced

Matching problem in more detail in Chapter 4.
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Chapter 2

Augmenting Graphs

2.1 Introduction

We say that a bipartite graph G is a triple (B,W,E), where B ∪W is the partition of G

into independent sets and E ⊆ B ×W is the set of edges in G.

Let G be a graph containing an independent set S and let S′ = V (G) \ S. We

say that the vertices in S are black and the vertices in S′ are white. Suppose B ⊆ S and

W ⊆ S′. Note that B is an independent set. If W is an independent set, |W | > |B| and
NS(W ) ⊆ B, we say that the bipartite graph H = G[W ∪B] is augmenting (for the set

S in the graph G). The increment of an augmenting graph H is ∆(H) = |W | − |B|. An
augmenting graph is minimal if it does not contain a smaller augmenting graph of the

same increment. For an independent set S, a maximum augmenting graph H is one that

maximises ∆(H).

Note that if T is a larger independent set than S, then setting W = T \ S and

B = S \T will cause G[W ∪B] to be an augmenting graph for S. And if H = G[W ∪B]

is an augmenting graph for an independent set S in G, then T = (S ∪W ) \B is a larger

independent set than S. In this case we say that T is obtained from S by applying a

H-augmentation. Thus we have the following theorem:

Theorem 4 (Augmenting Graph Theorem). An independent set S in a graph G is

maximum if and only if there are no augmenting graphs for S.

This theorem suggests the following general approach to �nd a maximum inde-

pendent set in a graph G: begin with any independent set S in G and as long as S admits

an augmenting graph H, apply H-augmentation to S. Clearly the problem of �nding

augmenting graphs is generally NP-hard, as the maximum independent set problem is
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NP-hard. However, this approach has proven to be a useful tool to develop approximate

solutions to the problem, to compute bounds on the independence number, and to solve

the problem in polynomial time for graphs in special classes (see [Hertz and Lozin, 2005]

for a survey of such results). For a polynomial-time solution, one has to

(a) �nd a complete list of augmenting graphs in the class under consideration,

(b) develop polynomial-time algorithms for detecting augmenting graphs in the class,

if any are present.

Obviously, if the list of augmenting graphs is �nite, then they must be bounded

in size. If this bound is known, then all augmenting graphs can be detected in poly-

nomial time. Therefore, only in�nite families of augmenting graphs are of interest. In

Section 2.2, we show that, with the restriction to hereditary classes, there are exactly

three minimal in�nite families of connected augmenting graphs. If we consider a heredi-

tary class of graphs where the set of possible augmenting graphs contains none of these

in�nite families, then the list of connected augmenting graphs will be bounded and we

will be able to solve the Maximum Independent Set problem in polynomial time.

In Section 2.3, we study augmenting graphs in the class of P5-free graphs. As we

mentioned earlier, the complexity status of the Maximum Independent Set problem

in the class of P5-free graphs is unknown (although the problem can be solved in this

class in subexponential time [Randerath and Schiermeyer, 2010]) and P5 is the unique

smallest forbidden induced subgraph for which this question is open.

Polynomial-time algorithms have been constructed for various subclasses of P5-

free graphs and for many of them, the problem was solved by means of augmenting

graphs (see e.g. [Boliac and Lozin, 2003; Gerber et al., 2003; Lozin and Mosca, 2009]).

In Section 2.3, we �rst prove some general results about P5-free augmenting graphs and

then apply the technique to solve the problem in the class of (P5,K3,z − e) free graphs

(Sections 2.3.1 and 2.3.2). Our solution generalises the results for (P5,K3,3 − e)-free

graphs [Lozin and Mosca, 2009], (P5,K2,z)-free graphs [Gerber and Lozin, 2003] and for

(P5,K2,z − e)-free graphs [Boliac and Lozin, 2003].

2.2 A Ramsey-type Result for Augmenting Graphs

According to Ramsey's theorem, there are precisely two minimal in�nite hereditary

classes of graphs, the class of complete graphs and the class of empty (edgeless) graphs.

In this section, we prove a similar result for augmenting graphs and show that there
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are precisely three minimal in�nite hereditary classes of connected augmenting graphs.

These classes are as follows (see also Fig. 2.1).

1. Chordless paths of even length {P2k+1 : k ∈ N}

2. Complete bipartite graphs {Kk,k+1 : k ∈ N}

3. Simple augmenting trees Ak, i.e. graphs formed from a star (K1,k) by subdividing

each edge exactly once

(a) Path (b) Complete Bipartite (c) Simple Augmenting Tree

Figure 2.1: The three special families of augmenting graphs.

We will show that in any hereditary class where the set of possible augmenting

graphs does not fully contain any of these three families, the size of minimal connected

augmenting graphs of increment 1 in the class will be bounded, in which case the Max-

imum Independent Set problem can be solved in polynomial time.

Augmenting paths, also known as augmenting chains, were �rst introduced in

[Berge, 1957]. In the class of claw-free graphs, all connected augmenting graphs are

paths. It is easy to show that in the class of co-graphs (P4-free graphs), all connected

augmenting graphs must be complete bipartite. Simple augmenting trees were introduced

in [Mosca, 1999] to solve the Maximum Independent Set problem in (P6, C4)-free

graphs.

We denote an induced matching with p edges by Mp. Also, we let Rb(s, t) be the

non-symmetric bipartite Ramsey number. That is, we de�ne Rb(s, t) to be the minimum

number such that if G is a bipartite graph with at least Rb(s, t) vertices in each part

then either G contains Ks,s as an induced subgraph or the bipartite complement of G

contains Kt,t as an induced subgraph. We start with a useful Lemma.

Lemma 5. For any natural numbers t and p, there is a number N(t, p) such that every

bipartite graph with a matching of size at least N(t, p) contains either a bi-clique Kt,t or

an induced matching Mp.
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Proof. For p = 1 and arbitrary t, we can de�ne N(t, p) = 1. Now, for each �xed t, we

prove the lemma by induction on p. Without loss of generality, we prove it only for values

of the form p = 2s (since if the graph contains an induced matching of size r, it contains

an induced matching of size r − 1). Suppose we have shown the lemma for p = 2s for

some s ≥ 0. Let us now show that it is su�cient to set N(t, 2p) = Rb(t, Rb(t,N(t, p))).

Consider a graph G with a matching of size at least Rb(t, Rb(t,N(t, p))). Without

loss of generality, we may assume that G contains no vertices outside of this matching.

We also assume that G does not contain an induced Kt,t, since otherwise we are done.

Then G must contain the bipartite complement of a KRb(t,N(t,p)),Rb(t,N(t,p)) with vertex

classes, say, A and B. Now let C and D consist of the vertices matched to vertices in A

and B respectively in the original matching in G.

Note that A,B,C,D are pairwise disjoint. G[A ∪ C] and G[B ∪ D] now each

contain a matching of size Rb(t,N(t, p)). There are no edges between A and B. However

there may exist edges between C and D. By our assumption, G[C ∪ D] is Kt,t-free,

therefore it must contain the bipartite complement of KN(t,p),N(t,p), with vertex sets

C ′ ⊂ C, D′ ⊂ D. Let A′ ⊂ A and B′ ⊂ B be the set of vertices matched to C ′ and D′

respectively in the original matching in G. Now there are no edges in G[A′ ∪ B′] and
none in G[C ′∪D′], but G[A′∪C ′] and G[B′∪D′] both contain a matching of size N(t, p).

Since G is Kt,t-free, by the induction hypothesis, we conclude that they both contain an

induced Mp. Putting these together we �nd that G contains an induced M2p. 2

Theorem 6. Let C be a class of bipartite graphs closed under isomorphism and under

taking induced subgraphs (i.e. closed under vertex-deletion). Let C∗ be the class of con-

nected minimal augmenting graphs of increment 1 in C, i.e. those with |W | = |B|+ 1. If

C∗ is in�nite, then it contains one of the following classes (see also Figure 2.1):

1. Chordless paths of even length {P2k+1 : k ∈ N}

2. Complete bipartite graphs {Kk,k+1 : k ∈ N}

3. Simple augmenting trees Ak, i.e. graphs formed from a star (K1,k) by subdividing

each edge exactly once

Proof. Suppose the theorem is false, i.e. there is a class C of bipartite graphs such that

C∗ is in�nite, but there is a t such that C∗ does not contain any Pt, Kt,t+1 or At. The

graphs in C∗ are connected, but are Pt-free, so there must be graphs in C∗ with vertices

of degree at least N(t, t) + 2.
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Consider a graph G = (B,W,E) in C∗. For any proper subset W ′ ( W , we

must have |NB(W ′)| ≥ |W ′|, since otherwise (NB(W ′),W ′, E ∩ (NB(W ′) ×W ′)) would

be a smaller augmenting graph, contradicting the minimality of G. By Hall's Marriage

Theorem, there must be a matching M from B to W (one vertex of W will not be

matched to any vertex of B since |W | = |B|+ 1).

Now let G = (B,W,E) be any graph in C∗ containing a vertex x of degree at least

N(t, t)+2. Let X be the set of vertices in the neighbourhood of x which form part of the

matching M , but are not matched with x. X must contain at least N(t, t) vertices. Let

Y be the set of vertices which M matches to the vertices of X. Then G[X ∪ Y ] contains

a matching of size N(t, t), but is Kt,t-free. This means that it must contain an induced

matching on t edges. Let Z be the set of vertices that occur in this induced matching.

Then G[Z ∪ {x}] forms an At, so At ∈ C and therefore At ∈ C∗. This contradiction

completes the proof. 2

Clearly, when using the augmenting graph technique for �nding maximum inde-

pendent sets, we need only consider minimal, connected augmenting graphs of increment

1. If there is some t such that our graph class is (Kt,t, Pt, At)-free then there are at most

�nitely many such augmenting graphs (up to isomorphism), which leads to the following

result:

Corollary 7. For positive integers i, j, k, the Maximum Independent Set problem

can be solved in polynomial time in the class of (Pi,Kj,j+1, Ak)-free graphs.

It should be noted that the proofs in this section do yield an upper bound on

the size of any minimal, connected augmenting graphs of increment 1 in the class of

(Pi,Kj,j+1, Ak)-free graphs. However, this result is only of theoretical interest, because

even for small i, j, k, the resulting bounds are much to large to be of use for practical

algorithms.

In the remainder of this chapter, we demonstrate a family of subclasses of P5-free

graphs where the Maximum Independent Set problem can be solved in polynomial

time using augmenting graphs. Clearly, P5-free graphs are At-free for t ≥ 2 and Pt-free

for t ≥ 5, but they are not Kt,t+1-free for any t. Thus, we need to deal with the fact

that there may be in�nitely many possible connected minimal augmenting graphs of

increment 1.

18



2.3 Augmenting graphs in P5-free graphs

We say that a bipartite graph H is chain bipartite if, for any two vertices x and y in the

same part of H, either N(x) ⊆ N(y) or N(y) ⊆ N(x). Clearly, any chain bipartite graph

must be P5-free. It is easy to prove (see [Gerber et al., 2003]) that every connected P5-free

bipartite graph must be a chain bipartite graph. Thus, we get the following conclusion:

Lemma 8. A connected augmenting graph is P5-free if and only if it is a chain bipartite

graph.

We can describe such graphs with the following notation: For positive integers

d1, . . . , dk, with d1 ≥ d2 ≥ . . . ≥ dk, let Bk(d1, . . . , dk) be the bipartite graph with parts

B = {b1, . . . , bk} and W = {w1, . . . , wd1} such that wi is adjacent to bj if and only if

i ≤ dj . Note that Bk(d1, . . . , dk) is a chain bipartite graph and that every chain bipartite

graph can be uniquely (up to isomorphism) described in this way. With this notation,

we can rewrite Lemma 8 as follows:

Lemma 9. A connected augmenting graph on at least 2 vertices is P5-free if and only if

it is isomorphic to a graph of the form Bk(d1, . . . , dk) with k < d1 ≥ d2 ≥ . . . ≥ dk > 0.

The following two lemmas provide more useful information:

Lemma 10. Suppose H = G[W ∪ B] is a minimal connected augmenting graph for a

maximal (with respect to set inclusion) independent set S. Then each vertex of B has at

least 2 neighbours in W .

Proof. Since H is connected, each vertex of B must have at least one neighbour in W .

Suppose B contains a vertex x which has exactly one neighbour y inW . Then H−{x, y}
is also an augmenting graph for S and has the same increment as H, contradicting the

minimality of H. 2

Lemma 11. Suppose Bk(d1, . . . , dk) = G[W ∪ B] is an augmenting graph for a maxi-

mal (with respect to set inclusion) independent set S in G. If G does not contain any

augmenting K1,2 then k > 1 and d2 ≥ d1 − 1.

Proof. We know that k > 1 since otherwise G[b1, w1, w2] would be an augmenting K1,2.

Similarly, if d2 < d1 − 1 then G[b1, wd1 , wd1−1] would be an augmenting K1,2. 2
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2.3.1 A Class of Augmenting Graphs

Fix z ≥ 4. Let K3,z − e be the graph obtained from the graph K3,z by deleting an edge.

This is the same graph as that described by B3(z, z, z − 1) and Bz(3, 3, . . . , 3, 2) (with

(z − 1) 3's).

Lemma 12. Let z ≥ 4 and let G be a (P5,K3,z−e)-free graph, containing a maximal (with

respect to set inclusion) independent set S. Suppose H = Bk(d1, . . . , dk) = G[W ∪ B] is

a connected minimal augmenting graph for S. Then one of the following must hold:

1. G contains an augmenting graph for S on at most 4z + 1 vertices,

2. H = Bk(`, `, . . . , `) for some k, ` (i.e. a Kk,`)

3. H = Bk(`+ 1, `, `, . . . , `) for some k, ` (i.e. a Kk,` with a pendant white vertex).

Proof. First, we may assume that G does not contain an augmenting graph for S on

at most 4z + 1 vertices, in which case there is no augmenting K1,2. It also means that

we must have d1 > 2z, k ≥ 2z. By Lemma 11, d2 ≥ d1 − 1 ≥ 2z and dk > 0.

Suppose that dz ≤ z − 1 then G[b1, . . . , bz, wz, . . . , w2z] would be an augment-

ing graph on 2z + 1 vertices. Therefore dz ≥ z. If dz+i < dz for some i > 0 then

G[b1, b2, . . . , bz−1, bz+i, w1, w2, wdz ] would be a K3,z − e (since z ≥ 4), so we must have

dz = dz+1 = · · · = dk. This means that di ≥ z for i ∈ {1, . . . , k}. Now suppose,

for contradiction, that di < di−1 for some i ≥ 3. Then G[b1, b2, bi, w1, . . . , wz−1, wdi−1
]

would be a K3,z − e. This shows that d2 = d3 = · · · = dz. Combined with the fact that

d1 ≥ d2 ≥ d1 − 1, this completes the proof of the lemma. 2

2.3.2 An Augmenting Graph Algorithm

We now proceed in a similar way to the case of (P5,K3,3 − e)-free graphs in [Lozin and

Mosca, 2009]. (That proof assumes that all augmenting graphs on 7 vertices have been

applied. For our proof, we increase this to 4z+1 vertices and then use similar arguments.)

Let G be a (P5,K3,z − e)-free graph containing an independent set S. Without

loss of generality, we will assume that G contains no augmenting graphs for S with at

most 4z + 1 vertices, since we can apply all such augmentations in polynomial time. We

will now construct an augmenting graph of maximum possible increment. Applying this

augmenting graph to the set S will yield an independent set of maximum size in G.

If two white vertices x and y have the same set of black neighbours, we say they

are similar. We start by partitioning the white vertices into similarity classes. We say
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that a white vertex x is light if it has exactly one black neighbour. Otherwise, we say

that x is heavy. Each class of light vertices must be a clique (since there is no augmenting

K1,2). We may assume that every heavy vertex must have at least 2z+1 black neighbours.

Indeed, if a heavy vertex x has less than 2z + 1 black neighbours, then by Lemma 12,

either there is an augmenting graph on at most 4z+1 vertices or x is not in any minimal

augmenting graph. Since there are no augmenting graphs with at most 4z + 1 vertices,

if a heavy vertex has less than z black neighbours, we can safely delete it from G.

If G has no light similarity classes, then all augmenting graphs in G must be

P4-free, in which case we proceed as in [Boliac and Lozin, 2003], which �nds a P4-free

augmenting graph of maximum increment in any P5-free graph (not necessarily (K3,z−e)-
free). From now on, we can therefore assume that G contains light similarity classes.

Let C be a heavy similarity class. We say that a light vertex x is C-attached if

NS(x) ⊆ NS(C). For each C-attached vertex x, let C(x) denote the subset of vertices of

C non-adjacent to x. We partition C(x) into co-components, i.e. sets of vertices which

form components in the complement of G[C(x)]. We call each such co-component a node

class of C associated with x. If no light vertices are attached to C, then the node classes

of C are its co-components. Note that, by de�nition, any two node classes are disjoint if

they are associated with the same light vertex. We now show that any two node classes

are disjoint, regardless of which (if any) light vertices they are associated with.

Lemma 13. [Lozin and Mosca, 2009] Let C be a heavy similarity class. If C1 and C2

are two distinct node classes of C, then they are disjoint.

Proof. Suppose, for contradiction, that C1 and C2 have non-empty intersection C12 :=

C1 ∩ C2, which contains a vertex u. Since C1 6= C2, without loss of generality, we may

assume C11 := C1 \C2 is non-empty and contains a vertex v. If C has no attached light

vertices then the lemma follows immediately from the de�nition of node class. In the

same way, we �nd that C1 and C2 cannot be associated with the same light vertex. Let

C1 be associated with x and C2 be associated with y.

We may assume that u and v are nonadjacent, since they both belong to the node

class C1. Indeed, if every vertex in C11 is adjacent to every vertex in C12, then C1 can

be partitioned into co-components, contradicting the de�nition of node class.

This means that y must be adjacent to v. If not, then v ∈ C(y), while v 6∈ C2 ⊆
C(y). The only way this could happen would be if v were adjacent to every vertex in C2,

which cannot be the case, since v is not adjacent to u. Thus y must indeed be adjacent

to v.

If x is adjacent to y, then letting z be a black neighbour of u and v, but not of
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x and y would mean that G[x, y, v, z, u] would form a P5. Thus x cannot be adjacent to

y. Since each light class is a clique, x and y must have di�erent black neighbours, say a

and b, respectively. But then G[x, a, u, b, y] would be a P5, which is a contradiction. 2

Let C0 denote the subset of vertices in C which are adjacent to every C-attached

vertex. To make the terminology consistent, we shall say that C0 is also a node class.

To distinguish C0 from the normal node classes of C, we shall call it the speci�c node

class of C. With this new node class, Lemma 13 tells us that the node classes form a

partition of C.

Suppose that S admits an augmenting graph. Let H be an augmenting graph of

maximum increment. Without loss of generality, we may assume that every connected

component of H forms a minimal augmenting graph, i.e. by Lemma 12, it is either a

Kk,` for some k, ` or it is a Kk,` with a pendant white vertex. It is easy to see that if

the pendant white vertex is present, it must be a vertex from a light class and all the

other white vertices must be from heavy classes. Clearly, all the heavy vertices from

one component of H must belong to the same heavy class. In fact, a stronger statement

holds:

Lemma 14. If S is not a maximum independent set, then S admits a maximum aug-

menting graph H such that for any component of H, the set of heavy vertices in this

component belong to the same node class.

Proof. Consider a component H ′ of a maximum augmenting graph H for S. Let W ′

be the set of heavy vertices in H ′ and let C be the heavy similarity class containing the

vertices of W ′.

First, we consider the case where the class C0 contains at least 2 vertices of W ′,

say x and y. Assume thatW ′ 6⊆ C0 and let z′ be a vertex in a non-speci�c node class Cj .

Let a be a C-attached vertex such that Cj is associated with a (i.e. z′ ∈ Cj ⊆ C(a)).

Let b1, . . . , bz−1 be black vertices in the neighbourhood of C, non-adjacent to a. But now

G[a, b1, . . . , bz−1, x, y, z
′] is isomorphic to K3,z − e, which is a contradiction. Thus if C0

contains at least 2 vertices of W ′ then W ′ ⊆ C0.

From now on, we may assume that the speci�c class C0 contains at most one

vertex of W ′. Since H ′ contains more than 4z + 1 vertices, we know that W ′ must

contain at least 2z + 1 vertices. We consider two cases:

Case 1: Three vertices x, y, z′ of W ′ belong to at least two di�erent non-speci�c node

classes, one of which we will denote by Ci. Without loss of generality, let x ∈W ′∩Ci, y 6∈
W ′ ∩ Ci, z′ 6∈ W ′ ∩ Ci. Let a be a C-attached light vertex such that Ci is associated

22



with a. Then x must be non-adjacent to a. Conversely, since y is not adjacent to x and

y 6∈ Ci ⊆ C(a), we must have y 6∈ C(a), in which case y must be adjacent to a. Similarly,

z′ must be adjacent to a. Let b1, . . . , bz−1 be z − 1 black vertices adjacent to y and z′,

but not a. Then G[a, b1, . . . , bz−1, x, y, z
′] is a K3,z − e, which is a contradiction.

Case 2: All vertices of B (with at most one exception, which belongs to C0) are in the

same non-speci�c node class, say Ci. Let a be the C-attached light vertex such that Ci

is associated with a. If B∩C0 = ∅ then we are done. If C0 contains a vertex of B, say x,

then a cannot be in H since x and a are adjacent. But now a cannot have a neighbour

in H outside H ′, otherwise a P5 would arise (let a1 ∈ V (H) \V (H ′) be a neighbour of a,

a2 ∈ NS(a), a3 ∈ B \ {x}, a4 ∈ NS(Ci) \NS(a) then G[a1, a, a2, a3, a4] would be a P5).

But now we can replace x by a in H, which produces a new augmenting graph of the

same increment where the vertices of our modi�ed component now satisfy the lemma. 2

By using the above lemma and the fact that S does not admit an augmenting

graph on less than 4z + 1 vertices, without loss of generality we may assume that:

• (*) Every heavy node class contains an independent set on at least 2z vertices.

Indeed, if some node classes have less than z vertices, then there is a maximum

augmenting graph which does not contain any of these vertices. We may thus safely

delete any vertices in such node classes. We now prove the following lemma:

Lemma 15. Assuming (*), let Ci and Cj be two node classes which are not similar. If

NS(Ci) ∩NS(Cj) = ∅ then no vertex in Ci is adjacent to a vertex in Cj.

Proof. First suppose that every vertex in Ci is adjacent to every vertex in Cj . Then

any z − 1 non-adjacent vertices in Ci, two nonadjacent vertices in Cj , any single vertex

in NS(Cj) and any single vertex in NS(Ci) form a K3,z − e, which is a contradiction.

Now suppose that x ∈ Ci has both a non-neighbour y ∈ Cj and a neighbour

w ∈ Cj . We may assume that w and y are nonadjacent. (If they were adjacent, then

they would be adjacent in G, so by de�nition of Cj they must be connected by a path

in G[Cj ]. But now we can replace w and y by vertices on this path with the required

property.) However, for a ∈ NS(Ci) and b ∈ NS(Cj), we �nd that G[a, x, w, b, y] is a P5.

This contradiction completes the proof. 2

We now associate an auxiliary graph Γ with G and S. The vertices of Γ are

the node classes Ci. Two vertices Ci and Cj in Γ are adjacent if and only if NS(Ci) ∩

23



NS(Cj) 6= ∅. By Lemma 15, Ci and Cj are nonadjacent if and only if both NS(Ci) ∩
NS(Cj) = ∅ and no vertex in Ci is adjacent to any vertex in Cj .

We put an integer weight w(Cj) on each vertex Cj of Γ as follows: if Cj is a

speci�c node class then w(Cj) = α(G[Cj ]) − |NS(Cj)| and if Cj is a non-speci�c class,

then w(Cj) = α(G[Cj ]) + 1 − |NS(Cj)|, where the value of α(G[Cj ]) will be calculated

recursively (see later).

Let Q = {v1, . . . , vp} be an independent set in Γ. With each vertex v, we associate

an independent set Iv of maximum cardinality in the node class represented by v. Let

H(v) be the bipartite graph whose black vertices HB(v) := NS(Iv) and whose white

vertices HW (v) are de�ned as follows. If v represents a speci�c node class Ci then

HW (v) := Iv, i.e. H(v) is a complete bipartite graph. If v represents a non-speci�c

node class Ci then �nd any light vertex a such that Ci is associated with a, and de�ne

HW (v) := Iv ∪ {a}, i.e. H(v) is a complete bipartite Kk,` with a pendant white vertex

a.

By de�nition of Γ, the sets HB(v1), . . . ,HB(vp) are pairwise disjoint. Using

Lemma 15 and the fact that G is P5-free, we �nd that ∪pi=1H
W (vi) is an independent set.

Let HQ denote the union of the graphs H(vi). This is a bipartite graph, whose increment

coincides with the weight of Q. If the weight of Q is positive, then HQ is an augmenting

graph for S. Furthermore, if Q is an independent set of maximum total weight, then HQ

is a maximum augmenting graph. We can thus use the following recursive procedure to

solve the maximum independent set problem in a (P5,K3,z − e)-free graph.

Algorithm MIS(G)

Input: A (P5,K3,z − e)-free graph G
Output: An independent set S of maximum size in G

1. Find an arbitrary maximal independent set S in G.

2. Keep applyingH-augmentations for augmenting graphsH on at most 4z+1 vertices

as long as such graphs are present.

3. Partition the vertices in V (G) \S into similarity classes. Delete any heavy vertices

with less than z black neighbours. Partition the vertices of each heavy class into

node classes.

4. In each node class Ci �nd a maximum independent set S(Ci) =MIS(G[Ci]). Delete

any node classes where |MIS(G[Ci])| < z.

5. Construct the auxiliary graph Γ and �nd an independent set Q of maximum weight

in it.
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6. If the weight of Q is positive, construct the augmenting graph HQ and enlarge S

by applying a HQ-augmentation.

7. Return S and STOP.

The recursion in Step 4 above applies to disjoint subgraphs of G, so to prove that

the algorithm runs in polynomial time, it is su�cient to prove that all of the other steps

run in polynomial time. This is easy to see for all steps apart from Step 5. To show that

Step 5 can be done in polynomial time, we use the following observation:

Lemma 16. The graph Γ is (P4, C4)-free.

Proof. Suppose, for contradiction, that Γ contains a P4 or C4 on vertices C1, C2, C3, C4,

with edges C1C2, C2C3, C3C4 and non-edges C1C3, C2C4 (C1C4 may or may not be an

edge). Note that if NS(Ci) ∩ NS(Cj) 6= ∅ then either NS(Ci) ⊆ NS(Cj) or NS(Cj) ⊆
NS(Ci). Indeed, if a1 ∈ NS(Ci) \NS(Cj), a2 ∈ Ci, a3 ∈ NS(Ci) ∩NS(Cj), a4 ∈ Cj , a5 ∈
NS(Cj) \NS(Ci), then G[a1, a2, a3, a4, a5] would be a P5, contradicting the fact that G

is P5-free. Without loss of generality, we may assume that NS(C2) ⊆ NS(C3). But C1

and C3 are not adjacent, so NS(C1) ∩NS(C3) = ∅. Thus NS(C1) ∩NS(C2) = ∅, which
contradicts the fact that C1C2 is an edge in Γ. This completes the proof. 2

Graphs which are (P4, C4)-free graphs are also known as trivially perfect [Golumbic,

1978] or quasi-threshold [Jing-Ho et al., 1996] graphs and have been much studied in the

literature. Finding an independent set of maximum weight can be solved in linear time

in the class of P4-free graphs using their �co-tree� structure [Corneil et al., 1981]. (This

is a simpli�ed version of modular decomposition. Modular decomposition is discussed

in more detail in Chapter 3). Summarising all of the above, we conclude the following

theorem:

Theorem 17. The maximum independent set problem is solvable in polynomial time in

the class of (P5,K3,z − e)-free graphs.

2.4 Conclusion

In this chapter we studied the use of augmenting graphs to �nd maximum independent

sets. We proved a Ramsey-type result on classes of augmenting graphs. We also showed

that augmenting graphs can be used to solve Maximum Independent Set in poly-

nomial time in the class of (P5,K3,z − e)-free graphs. The complexity of Maximum

Independent Set in P5-free graphs remains a very challenging open question.
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Chapter 3

Parameterized Algorithms for

Finding Independent Sets

3.1 Introduction

One approach to deal with NP-hard problems is based on the notion of �xed-parameter

tractability (fpt), which is a relaxation of classical polynomial-time solvability. A param-

eterized problem is said to be �xed-parameter tractable if it can be solved in time f(k)p(n)

on instances of input size n, where f(k) is a computable function depending only on the

value of the parameter k and p(n) is a polynomial independent of k. Unfortunately, if k

is the independence number, the Maximum Independent Set problem remains hard

even under this relaxation. More formally, it is W[1]-hard [Downey and Fellows, 1999].

However, for graphs in some restricted families the problem becomes �xed-parameter

tractable. In particular, this is true for graphs without large cliques, which follows from

a simple Ramsey argument (see e.g. [Raman and Saurabh, 2006]). This argument alone

implies �xed-parameter tractability of the problem for graphs of bounded degree, of

bounded degeneracy, of bounded chromatic number, in all proper minor-closed graph

classes (which includes, in particular, classes of graphs excluding single-crossing graphs

as minors [Demaine et al., 2005]) and all proper classes closed under taking subgraphs

(not necessarily induced). Beyond this argument, very little is known about the param-

eterized complexity of the problem in restricted graph families. Other classes where the

problem is known to be �xed-parameter tractable are the complements of t-multiple-

interval graphs [Fellows et al., 2009] and segment intersection graphs with a bounded

number of directions [Kára and Kratochvíl, 2006].

We develop fpt-algorithms that solve theMaximum Independent Set problem
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in several new classes of graphs, generalising some of the previously known results. In

fact, our results apply to a natural generalisation of the problem for weighted graphs.

We say that a graph G is a weighted graph if each vertex of G is assigned a real number

≥ 1, the weight of the vertex. The Maximum Weighted Independent Set problem

is that of �nding an independent set of maximum weight in a weighted graph, where

the weight of a set of vertices is the sum of the weights of its elements. This maximum

weight is denoted αw(G). We study the following parameterization of the Maximum

Weighted Independent Set problem:

Weighted Independent Set

Instance: A weighted graph G with weight function w : V (G) → R≥1

and a positive real number W .

Parameter: W .

Problem: Decide whether G has an independent set of weight at least

W and �nd such a set if it exists. If no such set exists, �nd

an independent set of weight αw(G) instead.

3.2 (Kr − e)-free graphs

As we noted above, a simple Ramsey argument implies the �xed-parameter tractability

of Maximum Independent Set in Kr-free graphs. We �rst extend this result to the

weighted case.

Theorem 18. For r ∈ N, theWeighted Independent Set problem is �xed-parameter

tractable in the class of Kr-free graphs.

Proof: Let (G,W ) be an instance of theWeighted Independent Set problem,

with G being a Kr-free graph on n vertices. Since the weight of each vertex is ≥ 1,

the weight of every independent set is at least its size. Therefore, if G has at least

R(dW e, r) vertices, then it necessarily has an independent set of size (and therefore of

weight) at least W . If the number of vertices of G is at least R(dW e, r), we can delete

any n − R(dW e, r) vertices from G, since the remaining graph still necessarily has an

independent set of weight at least W . Now the number of vertices of G is at most

R(dW e, r), so the problem can be solved in time independent of n. This implies the

�xed-parameter tractability of Weighted Independent Set for Kr-free graphs. 2

Since Kr−1 is an induced subgraph of Kr − e, our next result generalises Theorem 18.

Theorem 19. For r ∈ N, r ≥ 2, the Weighted Independent Set problem is �xed-

parameter tractable in the class of (Kr − e)-free graphs.
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Proof: Let (G,W ) be an instance of theWeighted Independent Set problem,

with G being a (Kr − e)-free graph on n vertices. Let I be an independent set of G such

that I is maximal with respect to set-inclusion and there are no two non-adjacent vertices

u and v in V (G) \ I for which (NG(u) ∪NG(v)) contains exactly one vertex of I, (i.e. I

admits no augmenting K1 or augmenting K1,2). Clearly, if one of these two conditions

fails, one can immediately construct a larger independent set. This implies that a set

with these properties can be found in time polynomial in n. Since the vertices of the

graph have weights ≥ 1, if we �nd an independent set of size ≥ W , then returning this

set correctly solves Weighted Independent Set. Hence we suppose |I| < W . (If this

happens, the procedure actually solves the Maximum Weighted Independent Set

problem.)

We partition the vertices in V (G)\I into classes according to their neighbourhood
in I, i.e. two vertices of V (G) \ I belong to the same class if and only if they have the

same neighbours in I. A class is light if its elements have exactly one neighbour in I and

heavy otherwise.

By the choice of I, each light class is a clique and hence any independent set

in G contains at most one vertex from each of the |I| light classes. Furthermore, no

vertex u from a light class has r − 2 neighbours in another light class, since otherwise a

Kr − e arises using u, some r− 2 neighbours of u in another light class, and their unique

neighbour in I.

Since G is (Kr − e)-free, every heavy class C induces a Kr−2-free graph, since

otherwise a clique K of order r−2 in C together with two neighbours in I of the vertices

in K would form a Kr − e. Hence, if some heavy class contains at least R(dW e, r − 2)

vertices, we can �nd an independent set of size at least W as explained in the proof of

Theorem 18. Therefore, we suppose that each heavy class contains less than R(dW e, r−2)

vertices, which implies that the union H of I and all the heavy classes contains at most

(W − 1) + 2WR(dW e, r − 2) vertices, which is bounded in terms of W and r.

We can now proceed as follows:

Step 1: Generate all independent sets contained in H. Clearly, the number of

such sets and the time needed to generate all of them is bounded in terms of W and r.

For each independent set IH found in this step, execute Step 2.

Step 2: Let L denote the set of vertices u in light classes such that u has no

neighbour in IH . Let L1 denote the set of vertices in L that belong to light classes C

with |C ∩ L| < rdW e. Furthermore, let L2 ⊆ L contain the rdW e vertices of largest

weight (breaking ties arbitrarily) in C ∩ L for each light class C with |C ∩ L| ≥ rdW e.
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Note that L1∪L2 contains at most rdW e2 vertices, which is bounded in terms of W and

r. Therefore, we can determine an independent set IL ⊆ L1 ∪ L2 such that IH ∪ IL is of

largest possible weight, in time bounded in terms of W and r.

Let J be an independent set of G with J ∩ H = IH such that J has maximum

possible weight and, subject to this condition, J has largest possible intersection with IL.

Let JL = J \H. Since J ∩H = IH and J is independent, we have JL = J ∩L. We claim

that JL = IL. For contradiction, we assume that JL 6= IL. In this case, the choice of IL

and J implies that JL must contain a vertex x ∈ L \ (L1 ∪ L2). Note that x necessarily

belongs to a light class C with |C ∩ L| ≥ rdW e. Since there are less than W vertices in

JL \ {x} and every vertex in a light class has less than r − 2 neighbours in C, the set

C ∩L2 contains a vertex x′ that is not adjacent to any vertex in JL \ {x}. By the choice

of L2, the weight of x
′ is at least the weight of x. Therefore, the set (J \ {x}) ∪ {x′} is

independent, has at least the weight of J and a larger intersection with IL than J , which

contradicts the choice of J . This proves JL = IL, which means that the set IH ∪ IL
found in the second step is an independent set of maximum weight intersecting H in

IH . Since we execute the second step for all possible choices of IH , returning a set of the

form IH ∪IL that is of largest possible weight correctly solvesWeighted Independent

Set. Clearly, the running time of the sketched procedure is fr(W )p(n) where, for �xed r,

fr(W ) is a computable function depending on W and p(n) is a polynomial independent

of W . 2

Note that the polynomial p(n) above is independent of r as well as independent

of W , so the problem is �xed-parameter tractable even if parameterized by both W and

r.

3.3 Splittable graphs

In this section, we consider graphs that allow a certain type of decomposition; either of

its vertex set or of its edge set.

De�nition 20. For r ∈ N and a graph G, a partition V (G) = X ∪ Y of the vertex set

of G is an r-split partition of G if ω(G[X]) < r and α(G[Y ]) < r. If a graph G has an

r-split partition, then G is an r-split graph.

The notion of r-split graphs generalises Kr-free graphs and many other important

hereditary classes. To see the importance of this notion, observe that for every hereditary

class X (see e.g. [Balogh et al., 2000]), there is a natural number k (called the index for

the class) such that the number Xn of n-vertex labelled graphs (also known as the speed
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of X) satis�es limn→∞
log2Xn

(n2)
= 1− 1

k(X) , Furthermore, if E i,j denotes the class of graphs
whose vertices can be partitioned into at most i independent sets and j cliques, then

the index k(X) of a class X is the maximum k such that X contains a class E i,j with

i+ j = k. In other words, the classes E i,j with i+ j = k are the only minimal classes of

index k. Therefore, any class X of index > 1 can be approximated by a minimal class

E i,j of the same index, in the sense that limn→∞
log2Xn

Ei,jn
= 1. Clearly, E i,j is a subclass

of max{i+ 1, j + 1}-split graphs.
Note that the class of split graphs (i.e. graphs partitionable into an independent

set and a clique) is exactly the class E1,1 and that the graphs in this class are precisely

the 2-split graphs. Among various nice properties, split graphs admit polynomial-time

recognition. In the next lemma we show that this property extends to r-split graphs for

all values of r.

Lemma 21. For every r ∈ N, the class of r-split graphs can be recognised in polynomial

time, and a certifying r-split partition of the vertex set can be constructed within this

time (where r is a constant which is not part of the input).

Proof: Let G = (V,E) be a graph and Y an arbitrary subset of its vertices with

α(G[Y ]) < r. It is not di�cult to see that in polynomial time one can check if G contains

a set Y ′ such that

(1) |Y \ Y ′| < R(r, r), α(G[Y ′]) < r and |Y ′| = |Y |+ 1.

As long as G admits such a set Y ′, replace Y with Y ′, i.e. set Y := Y ′. If no such set

can be found, then check if G contains a set Y ′ such that

(2) |Y \ Y ′| < R(r, r), |Y ′ \ Y | < R(r, r), α(G[Y ′]) < r and ω(G[V \ Y ′]) < r.

If the answer is a�rmative, then obviously G is an r-split graph and Y ′ ∪ (V \ Y ′) is

a respective partition. Otherwise, G is not an r-split graph. To see this, suppose for

contradiction that G admits an r-split partition V = X0 ∪ Y0 with ω(G[X0]) < r and

α(G[Y0]) < r. By the choice of Y , the graph G[Y \ Y0] is Kr-free. Also, since Y \ Y0

is a subset of X0, the graph G[Y \ Y0] is Kr-free. Therefore |Y \ Y0| < R(r, r). If

additionally |Y0 \ Y | < R(r, r), then Y ′ = Y0 satis�es (2), contradicting our assumption.

If |Y0 \ Y | ≥ R(r, r), then |Y0| > |Y | in which case a subset Y ′ ⊂ Y0 satisfying (1)

can be found. A contradiction in both cases proves correctness of the procedure. The

polynomiality follows from the fact that r and R(r, r) are constants independent of the

number of vertices in G. 2
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Now we proceed to algorithms that solve the Weighted Independent Set problem

for r-split graphs. For r = 2 the problem is known to be solvable in polynomial time,

since it is a subclass of perfect graphs. However, for large values of r the problem is

NP-hard. In the next theorem we show that the problem is �xed-parameter tractable in

the class of r-split graphs for any value of r. Since Kr-free graphs are r-split graphs, our

result generalises Theorem 18.

Theorem 22. For r ∈ N, theWeighted Independent Set problem is �xed-parameter

tractable in the class of r-split graphs.

Proof: Let (G,W ) be an instance of theWeighted Independent Set problem

with G an r-split graph. First, we apply Lemma 21 in order to �nd a partition V (G) =

X ∪Y such that G[X] is Kr-free and G[Y ] is Kr-free. This takes polynomial time. Since

G[Y ] is Kr-free, the graph G[Y ] has only polynomially many independent sets. For each

such set IY of weight w(IY ), we solve the Weighted Independent Set problem for

the instance (G[X \NG(IY )],W −w(IY )) using Theorem 18, which yields a set IX(IY ).

Returning an independent set of the form IY ∪ IX(IY ) of maximum weight correctly

solves Weighted Independent Set. 2

The notion of r-split graphs admits a further generalisation as follows:

De�nition 23. Let r ∈ N and G be a hereditary class of graphs. A partition E(G) =

E0∪E1 of the edge set of G is an (r,G)-split if G0 = (V,E0) is rK2-free and G1 = (V,E1)

belongs to G. If a graph G has an (r,G)-split partition, then G is an (r,G)-split graph.

It is not di�cult to see that any r-split graph is (r, Free(Kr))-split, where Free(Kr)

stands for the class of Kr-free graphs. Indeed, let G = (V,E) be an r-split graph with

an r-split partition V = X ∪ Y where ω(G[X]) < r and α(G[Y ]) < r, and let E0 ∪ E1

be a partition of E with E1 = E(G[X]) and E0 = E \ E1. Then obviously G1 = (V,E1)

is Kr-free. To see that G0 = (V,E0) is rK2-free, observe that in this graph the set X

is independent and hence every edge contains at least one of its endpoints in the set

Y , which means that if G0 would contain an induced rK2, then Y would contain an

independent set of size r, which is impossible.

As we saw earlier, for any natural r, the class of r-split graphs enjoys the nice

property that graphs in this class can be recognised in polynomial time, which in turn

implies �xed-parameter tractability of the Weighted Independent Set problem in

this class. This is obviously not true for general (r,G)-split graphs. However, as we show

below, if G is a class such that the problem is �xed-parameter tractable in it and an
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(r,G)-split partition can be found in polynomial time for any (r,G)-split graph, then the

problem is also �xed-parameter tractable in the class of (r,G)-split graphs.

Theorem 24. Let r ∈ N and G be a hereditary class of graphs. If

• the Weighted Independent Set problem is �xed-parameter tractable in G, and

• an (r,G)-split partition can be found in polynomial time for any (r,G)-split graph,

then the Weighted Independent Set problem is �xed-parameter tractable in the class

of (r,G)-split graphs.

Proof: Given an instance (G,W ) ofWeighted Independent Set with G being

an (r,G)-split graph, we �rst apply the polynomial time algorithm to �nd an (r,G)-split

partition E(G) = E0 ∪ E1 of the edge set of G such that G0 = (V,E0) is rK2-free and

G1 = (V,E1) belongs to G. Note that the rK2-free graph G0 only has a polynomial

number of maximal independent sets [Balas and Yu, 1989], which can all be generated in

polynomial time [Tsukiyama et al., 1977], and that a set of vertices is independent in G

if and only if it is independent in G1 and a subset of some maximal independent set of

G0. Therefore, solving the Weighted Independent Set problem in G1[I0] for each of

the polynomially many maximal independent sets I0 of G0 and returning an independent

set of maximum weight obtained in this way, correctly solvesWeighted Independent

Set on the instance (G,W ). Since Weighted Independent Set is �xed-parameter

tractable in G, the desired result follows. 2

3.4 Beyond triangle-free graphs

In the search of further results, in this section we study extensions of triangle-free graphs,

which is the simplest nontrivial class of graphs of bounded clique number. We start by

analysing H-free graphs, where H is a one-vertex extension of a triangle.

Theorem 25. For each one-vertex extension H of a triangle, the Weighted Indepen-

dent Set problem is �xed parameter tractable in the class of H-free graphs.

Proof: It is not di�cult to see that (up to isomorphism) there are four one-vertex

extensions of a triangle: K4, K4 − e, K3 + e and K3 ∪ K1, where K3 + e stands for a

triangle plus a pendant edge (also known as a paw, see also Figure 6.4) and K3 ∪ K1

denotes the union of a triangle and an isolated vertex.

The �xed-parameter tractability of the problem in the classes of K4-free graphs

and (K4 − e)-free graphs follows from Theorems 18 and 19, respectively.
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The structure of (K3 + e)-free graphs has been characterised in [Olariu, 1988] as

follows: A connected (K3 +e)-free graph is either triangle-free or a complete multipartite

graph (i.e. the complement of the disjoint union of cliques). Together with the trivial ob-

servation that theWeighted Independent Set problem can be reduced to connected

graphs, this proves the theorem for (K3 + e)-free graphs.

Finally, to derive the same conclusion for (K3 ∪ K1)-free graphs, we invoke the

obvious fact that a graph G is (K3∪K1)-free if and only if G−NG[u] is K3-free for every

vertex u ∈ V (G). Together with the trivial identity

αw(G) = max
u∈V (G)

{ω(u) + αw(G−NG[u])},

the �xed-parameter tractability of the problem in the class of (K3 ∪ K1)-free graphs

follows from Theorem 18. 2

To further extend one of the classes covered by Theorem 25, we employ the notion of

modular decomposition. The idea of modular decomposition was �rst introduced in

the 1960s by Gallai [Gallai, 1967], and also appeared in the literature under various

other names such as prime tree decomposition [Ehrenfeucht and Rozenberg, 1990], X-

join decomposition [Habib and Maurer, 1979], or substitution decomposition [Möhring,

1985], and this technique has previously been used to construct fpt-algorithms (see e.g.

[Protti et al., 2009]). To describe this idea, let us �x some terminology.

Given a graph G = (V,E), a subset of vertices U ⊆ V and a vertex x ∈ V outside

U , we say that x distinguishes U if x has both a neighbour and a non-neighbour in U .

A subset U ⊆ V is called a module of G if no vertex in V \U distinguishes U . A module

U is nontrivial if 1 < |U | < |V |, otherwise it is trivial. A graph is called prime if it has

only trivial modules. A module U is maximal if |U | < |V | and there is no module U ′

such that U ( U ′ 6= V . Maximal modules have the following useful property:

Lemma 26. [Gallai, 1967] If G is a connected graph whose complement is also connected,

the maximal modules of G are pairwise disjoint i.e. they form a partition of the vertex

set of G.

Moreover, from the de�nition of maximal module, it follows that if U and W are

distinct maximal modules, then there are either no edges between them or every vertex

in U is adjacent to every vertex in W . Using these properties of maximal modules, we

can �nd a maximum weight independent set in G by

(1) reducing the problem to smaller instances if G or its complement are disconnected,
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(2) recursively solving the problem in the subgraphs of G induced by maximal modules,

(3) contracting each maximal module M to a single vertex and assigning to it the

weight αw(G[M ]), obtaining in this way a new graph G0,

(4) solving the problem for the graph G0.

The graph G0 constructed in step 3 of the outlined procedure is prime. So, the procedure

reduces the Maximum Weighted Independent Set problem for any hereditary class

to prime graphs in the class. This reduction can be implemented in polynomial time (see

e.g. [McConnell and Spinrad, 1999]). Let us show that this is also an fpt-reduction, i.e.

it preserves �xed-parameter tractability.

Theorem 27. Let X be a hereditary class of graphs and let X0 denote the class of prime

graphs in X . If the Weighted Independent Set problem is �xed-parameter tractable

in X0, then it is �xed-parameter tractable in X .

Proof: Let (G,W ) be an instance of theWeighted Independent Set problem

with G ∈ X . Recall that the modular decomposition tree T of G can be determined in

linear time [McConnell and Spinrad, 1999; Tedder et al., 2008] and that the set of leaves

of T equals the vertex set V of G. To each node v of T we associate the subgraph Gv of G

induced by the leaves of the subtree of T rooted at v. Processing the vertices of T in an

order of non-increasing height, we will �nd for each node v of T an independent set Iv of

Gv such that the weight w(Iv) of Iv is at least min{W,αw(Gv)}. If the weight of Iv is at
least W , we stop the procedure and output Iv. Otherwise, we assign the independent set

Iv of weight αw(Gv) to the node v. The procedure starts by assigning the independent

set Iv = {v} to each leaf v of T . Now let v be an inner node of T .

If Gv is disconnected, then the children v1, v2, . . . , vl of v correspond to the con-

nected components of Gv. In this case, we let Iv = Iv1 ∪ Iv2 ∪ . . . ∪ Ivl .
If the complement of Gv is disconnected, then the children v1, v2, . . . , vl of v

correspond to the connected components of the complement of Gv. In this case we let

Iv = Ivi , where w(Ivi) = max{w(Iv1), w(Iv2), . . . , w(Ivl)}.
Finally, if both Gv and its complement are connected, then the children v1, . . . , vl

of v correspond to the subgraphs of Gv induced by the maximal modules U1, U2, . . . , Ul of

Gv, which partition the vertex set of Gv. Let the graph G
0
v arise from Gv by contracting

each maximal module Ui of Gv into a single vertex denoted i to which we assign the

weight w(i) = w(Ivi). Since G0
v belongs to X0, there is an algorithm A that solves

Weighted Independent Set on the instance (G0
v,W ) in time f(W )lc ≤ f(W )nc,
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where c is a constant. If I is the output of A, then let Iv =
⋃
i∈I Ivi . It is not di�cult

to see that the set assigned to the root of T correctly solves Weighted Independent

Set on the instance (G,W ). Since T has O(n) vertices, the overall time complexity is

at most f(W )nc+1. 2

Theorem 27 reduces the Weighted Independent Set problem from general graphs

to prime graphs. The corresponding result for the non-parameterized problem is well-

known.

Now we apply Theorem 27 in order to develop an fpt-algorithm for theWeighted

Independent Set problem in the class of {house, bull}-free graphs. The graphs house
and bull are shown in Fig. 3.1. Observe that both these graphs containK3+e. Therefore,

the class of {house, bull}-free graphs extends the class of (K3 + e)-free graphs for which

an fpt solution was shown in Theorem 25.

(a) house (b) bull

Figure 3.1: The house and the bull graphs

Theorem 28. The Weighted Independent Set problem is �xed-parameter tractable

in the class of {house, bull}-free graphs.

Proof: To prove the theorem, we use the following characterisation of {house, bull}-
free graphs proposed in [Olariu, 1991]: Every prime {house, bull}-free graph is either

triangle-free or the complement of a bipartite chain graph. (A bipartite graph is a bi-

partite chain graph if the vertices in both parts of the bipartition are linearly ordered by

inclusion of neighbourhoods.) Obviously, for the complements of bipartite graphs, the

Maximum Weighted Independent Set problem can be solved in polynomial time,

since the size of any independent set in such a graph is at most 2. Also, by Theorem

18, theWeighted Independent Set problem is �xed-parameter tractable in the class

of triangle-free graphs. Therefore, by Theorem 27, it is �xed-parameter tractable in the

class of {house, bull}-free graphs. 2
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3.4.1 A Simpler Algorithm

Modular decomposition is a very powerful technique that is often very useful. A modular

decomposition for a graph can be found in linear time [McConnell and Spinrad, 1999],

however the algorithm for doing this is very complex. If we do not use such complicated

methods, it is also possible to prove a slightly weaker result in the unweighted case using

a very simple algorithm. In particular, we show that the Maximum Independent

Set problem is �xed-parameter tractable in the class of to (C4, bull)-free graphs, when

parameterized by the solution size. Note that this is a subclass of (house, bull)-free

graphs. The solution is based on the following technical lemma.

Lemma 29. In any triangle in a (C4, bull)-free graph G, there are two distinct vertices

u, v such that NG[u] ⊆ NG[v].

Proof. Let xyz be a triangle in a (C4, bull)-free graph G. For contradiction, we assume

that for every two distinct vertices u, v ∈ V (C), the set NG[u] \NG[v] is not empty.

First, we suppose that there is some x′ ∈ NG[x]\(NG[y]∪NG[z]), i.e. V (C)∪{x′}
induces a paw. Let y′ ∈ NG[y]\NG[z] and z′ ∈ NG[z]\NG[y]. Since neitherG[x, y, z, x′, y′]

nor G[x, y, z, x′, z′] can be a bull and neither G[x, y, y′, x′] nor G[x, z, z′, x′] can be a C4,

xy′ and xz′ are edges of G. Since G[y, z, z′, y′] is not a C4, the vertices y′ and z′ are

not adjacent. Let x′′ ∈ NG[y] \ NG[x]. Since G[x, y, x′′, x′] is not a C4, the vertices x′

and x′′ are not adjacent. Since G[x, y, z, x′, x′′] is not a bull, x′′z is an edge of G. Since

G[x′′, y, z, y′, z′] is not a bull, we may assume, by symmetry, that x′′y′ is an edge of G.

Now G[x, z, x′′, y′] is a C4, which is a contradiction.

Hence, we may assume that G contains no induced paw (a graph obtained from

a bull by deleting a vertex of degree one). This implies the existence of vertices x′ ∈
(NG[y]∩NG[z]) \NG[x], y′ ∈ (NG[x]∩NG[z]) \NG[y], and z′ ∈ (NG[x]∩NG[y]) \NG[z].

If {x′, y′, z′} is independent, then G[x′, z, y, y′, z′] is a bull. Hence, we may assume, by

symmetry, that x′y′ is an edge of G. Now G[x, y, x′, y′] is a C4 which is a contradiction.

This completes the proof. 2

Theorem 30. TheMaximum Independent Set problem parameterized by the solution

size is �xed-parameter tractable in the class of (C4, bull)-free graphs.

Proof. If a graph G contains two vertices u, v such that NG[u] ⊆ NG[v], then deletion of

the vertex v does not change the independence number of G, since any independent set

S containing v contains neither u nor any neighbour of u. Therefore, v can be replaced

in S by u. This argument and Lemma 29 imply that if a (C4, bull)-free graph G contains
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a triangle, then one of the vertices of this triangle can be deleted without changing the

independence number of G. In other words, in at most n3 steps the problem can be

reduced from G to a triangle-free induced subgraph of G with the same independence

number. Since for the triangle-free graphs the problem is �xed-parameter tractable, the

result follows. 2

3.5 Conclusion

In this chapter, we obtained new results on the parameterized complexity of theWeighted

Independent Set problem in hereditary classes of graphs. These new results, together

with some previously known results, allow us to conclude, in particular, that the problem

is �xed-parameter tractable in all hereditary classes de�ned by a single forbidden induced

subgraph G with at most 4 vertices, except for G = C4. Finding the parameterized com-

plexity of the problem in the class of C4-free graphs is a challenging open problem. In

addition to the techniques studied in this chapter, some other approaches may be useful

for �nding an answer to the above question, such as graph transformations [Lozin, 2011],

separating cliques [Brandstädt and Hoàng, 2007], and split decomposition [Rao, 2008].

There has recently been a lot of research on kernel sizes for fpt problems. The

kernel sizes given by the algorithms in this chapter are quite large. Finding lower bounds

for the kernel size is an interesting direction for future research.
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Chapter 4

The Maximum Induced Matching

Problem

4.1 Introduction

A matching in a graph is a subset of edges no two of which share of vertex. A matching

is induced if no two vertices belonging to di�erent edges of the matching are adjacent.

In other words, an induced matching in a graph G is formed by the edges of a 1-regular

induced subgraph of G. Induced matchings have also appeared under the name �strong

matchings� [Golumbic and Laskar, 1993]. Faudree et al. [1989] were the �rst to study

induced matchings in the context of bipartite graphs.

TheMaximum Induced Matching problem is that of �nding an induced match-

ing of maximum cardinality in a graph. We use iµ(G) to denote the maximum size of an

induced matching in G. Another way of describing it is as theMaximum Independent

Set problem in L(G)2, the square of the line graph of G.

Due to various applications (see e.g. [Golumbic and Lewenstein, 2000]), theMax-

imum Induced Matching problem has received much attention in recent years. It was

originally introduced in [Stockmeyer and Vazirani, 1982], where it was called the �risk-free

marriage problem�.

From a computational point of view, �nding an induced matching of maximum

cardinality in a graph is an intractable problem in many respects. First of all, this prob-

lem is NP-hard, which was proved independently in [Cameron, 1989] and [Stockmeyer

and Vazirani, 1982]. Moreover, it remains NP-hard under substantial restrictions, for

instance: for bipartite graphs of vertex degree at most 3 [Lozin, 2002b; Rusu, 2008],

line graphs [Kobler and Rotics, 2003], planar graphs of vertex degree at most 4 [Ko
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and Shepherd, 2003] and even for cubic planar graphs [Duckworth et al., 2005]. On the

other hand, polynomial-time algorithms for this problem have been developed for weakly

chordal graphs [Cameron et al., 2003], AT-free graphs [Chang, 2003], circular arc graphs

[Golumbic and Laskar, 1993], graphs of bounded clique-width [Kobler and Rotics, 2003]

and some other classes of graphs [Brandstädt and Hoàng, 2008; Brandstädt et al., 2007;

Cameron, 2004; Golumbic and Lewenstein, 2000; Lozin, 2002b].

The problem also remains intractable in terms of �nding approximation algo-

rithms. In particular, in [Duckworth et al., 2005] the problem was shown to be APX-

complete in cubic graphs and in bipartite graphs where the minimum degree is 2s and

the maximum degree is 3s, for any positive integer s. In [Orlovich et al., 2008] it was

shown that the problem is not approximable within a factor of n1/2−ε for any ε > 0.

Some other inapproximability results can be found in [Chlebík and Chlebíková, 2008]

and in [Duckworth et al., 2005], where some explicit lower bounds for the approxima-

tion ratio are given. Conversely, a subclass of bipartite graphs has been found in which

the problem admits a polynomial-time approximation scheme [Duckworth et al., 2003].

For all notions related to approximation theory not de�ned in this thesis, the reader is

referred to [Ausiello et al., 1999].

The problem was also shown to be intractable from a parameterized point of

view. More precisely, it is W[1]-hard in general [Moser and Thilikos, 2009] and even

when restricted to bipartite graphs [Moser and Sikdar, 2009]. In Section 4.2 we reveal

a number of graph classes, including subclasses of bipartite graphs, where the problem

admits �xed-parameter tractable algorithms.

Much attention has been given to the problem in regular graphs (see e.g. [As-

siyatun, 2005; Chlebík and Chlebíková, 2008; Duckworth et al., 2002, 2005; Gotthilf and

Lewenstein, 2006]). We contribute to this topic in two di�erent ways. In Section 4.3 we

show that the problem is APX-complete in k-regular bipartite graphs, for any k ≥ 3,

which was previously unknown, despite the fact that �nding a maximum induced match-

ing was known to be APX-hard both for regular graphs and for bipartite graphs. In

contrast to this negative result we show that the problem admits a simple solution for

hypercubes (a proper subclass of regular bipartite graphs).

4.2 Parameterized complexity of the problem

Recall that in parameterized complexity theory, an instance of a graph problem is a

pair (G, k), where G is a graph and k is a parameter assigning a natural number to

each graph. A parameterized problem is �xed-parameter tractable if it can be solved in
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f(k)nO(1) time, where n is the number of vertices in G and f(k) is a computable function

depending only on the value of the parameter k. An fpt algorithm is one that solves the

parameterized problem in f(k)nO(1) time.

We study the following parameterization of the Maximum Induced Matching

problem:

k-Induced Matching

Instance: A graph G and a positive integer k.

Parameter: k.

Problem: Decide whether G has an induced matching of size at least

k and �nd such a matching if it exists. If no such matching

exists, �nd an induced matching of size iµ(G) instead.

The parameterized complexity of the k-Induced Matching problem was studied

in [Moser and Thilikos, 2009] and [Moser and Sikdar, 2009]. In particular, in [Moser

and Thilikos, 2009] it was shown that the problem is W[1]-hard and hence unlikely to

be �xed-parameter tractable when parameterized by the solution size. In [Moser and

Sikdar, 2009], this result was strengthened by showing that the problem is also W[1]-

hard when restricted to bipartite graphs. On the other hand, in [Moser and Sikdar, 2009]

the problem was shown to be �xed-parameter tractable in several classes such as planar

graphs (see also [Kang et al., 2010] for a better fpt algorithm for planar graphs with

maximum degree 3), graphs of bounded degree and the class of (C3, C4, C5)-free graphs.

Observe that the latter class includes, in particular, all C4-free bipartite graphs, where

the problem is known to be NP-hard [Lozin, 2002b]. We generalise the �xed-parameter

tractability of the problem in the class of C4-free bipartite graphs in two di�erent ways.

First, in Section 4.2.1 we prove �xed-parameter tractability of the problem in the class

of (Ks,Kt,t)-free graphs for arbitrary values of s and t, which also generalises the results

for (C3, C4, C5)-free graphs, planar graphs and graphs of bounded degree. Second, in

Section 4.2.2 we present an fpt algorithm for so-called A-free bipartite graphs.

Now, let us note that in any graph, if two vertices x and y have the same neigh-

bourhood, at most one of them can be the endpoint of an edge in any induced matching.

Consequently, for computing a maximum induced matching we can �rst look for every

pair (x, y) of vertices with the same neighbourhood and arbitrarily delete one of them.

This can be done in polynomial time.

Remark 1. If two vertices in a graph have the same neighbourhood, we can arbitrarily

delete one of them and the size of the maximum induced matching will be unchanged.

Modules in bipartite graphs have the following property (recall that modules were
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de�ned in Chapter 1).

Remark 2. In a connected bipartite graph G, every non-trivial module must be an inde-

pendent set.

Indeed, if a non-trivial module X of vertices in G contains two vertices y, y′ that

are adjacent, then they must be in di�erent parts of the bipartition of G. Since X is a

non-trivial module and the graph G is connected, there must be a vertex z outside of X

with a neighbour x ∈ X. This vertex z can be connected to at most one of y and y′,

since the graph is bipartite, contradicting the claim that X is a module.

From this remark, it follows that in any non-trivial module X of a connected

bipartite graph G, every vertex of X must have the same neighbourhood. This means

that if G is a bipartite graph and no two vertices of G have the same neighbourhood,

then every component of G is prime.

Since the problem can be solved independently on each component of a graph, we

can therefore draw the following conclusion:

Remark 3. The k-Induced Matching problem is �xed-parameter tractable in a hered-

itary class of bipartite graphs C if and only if it is �xed-parameter tractable in the class

of prime graphs in C.

4.2.1 An fpt algorithm for (Ks, Kt,t)-free graphs

We denote an induced matching with p edges by Mp. Also, we let R(s, t) be the non-

symmetric Ramsey number. That is, we de�ne R(s, t) to be the minimum number such

that if G is a graph on at least R(s, t) vertices, then either G contains Ks as an induced

subgraph or the complement of G contains Kt as an induced subgraph (i.e. G contains

an independent set of size t). The number N(t, p) is de�ned as in Lemma 5 i.e. it is a

number such that every bipartite graph with a matching of size at least N(t, p) contains

either a bi-clique Kt,t or an induced matching Mp (without loss of generality, we may

assume N(t, p) is the minimal number with this property).

We start by generalising Lemma 5 to non-bipartite classes of graphs.

Lemma 31. For any natural numbers s, t and p, there is a number N ′(s, t, p) such that

every graph with a matching of size at least N ′(s, t, p) contains either a clique Ks, an

induced bi-clique Kt,t or an induced matching Mp.

Proof. We will show that setting N ′(s, t, p) = R(s,R(s,N(t, p))) is su�cient. Indeed,

suppose G is a (Ks,Kt,t)-free graph with a matching of size R(s,R(s,N(t, p))). G is
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Ks-free, so it must contain an independent set A of size R(s,N(t, p)). Let B be the set

of vertices matched to A. Since G[B] is Ks-free, it must contain an independent set B′

of size N(t, p). Let A′ be the set of vertices matched to B′. Now G[A′∪B′] is a bipartite
graph with a matching of size N(t, p). By Lemma 5, G[A′ ∪ B′] contains an induced

matching Mp. 2

Theorem 32. For each �xed s and t, the k-Induced Matching problem is �xed-

parameter tractable in the class of (Ks,Kt,t)-free graphs.

Proof. Fix s and t and let G be a (Ks,Kt,t)-free graph with n vertices. We will show

that the problem of determining whether G has an induced matching of size k can be

solved in time f(k)p(n), where f(k) is a function of k only and p(n) is a polynomial in

n independent of k.

Let M be a maximal (with respect to set inclusion) matching in G. Clearly, such

a matching can be found in polynomial time. If M is of size at least N ′(s, t, k), then by

Lemma 31, G has an induced matching of size k. To �nd such a matching, we can restrict

ourselves to N ′(s, t, k) edges of M . This reduces the problem to a subgraph G induced

by 2N ′(s, t, k) vertices, at which point the problem can be solved in O(N ′(s, t, k)2kk2)

time, i.e. independent of n.

If M contains less than N ′(s, t, k) edges we proceed as follows. Let VM be the

set of vertices which are endpoints of edges in M . If xy ∈ E(G), then either x ∈ VM or

y ∈ VM (otherwise M would not be maximal). By Remark 1, we may assume that every

vertex of G has a di�erent neighbourhood.

So we are now reduced to a graph in which the neighbourhood of every vertex

v ∈ V \VM is contained in VM and no two vertices have the same neighbourhood. Thus the

graph contains at most 22N ′(s,t,k) + 2N ′(s, t, k) vertices and we can solve the k-Induced

Matching problem in O((22N ′(s,t,k) + 2N ′(s, t, k))2kk2) time, which is independent of n.

Summarising, we conclude that the problem is �xed-parameter tractable in the

class of (Ks,Kt,t)-free graphs. 2

This proof can also be generalised to the weighted version of the problem, where

the w(xy) weight of any edge xy is at least 1:
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k-Weighted Induced Matching

Instance: A graph G, a weight function w : E(G)→ R and a positive

integer k.

Parameter: k.

Problem: Decide whether G has an induced matching of total weight at

least k and �nd such a matching if it exists. If no such match-

ing exists, �nd an induced matching of maximum weight in-

stead.

Theorem 33. For each �xed s and t, the k-Weighted Induced Matching problem

is �xed-parameter tractable in the class of (Ks,Kt,t)-free graphs.

Proof. Note that since we insist that every edge has weight at least 1, the total weight

of any induced matching must be greater than or equal to its size. The proof follows

similarly, except that we cannot immediately assume that the input graph G is prime.

If G is not prime, say x and y have the same neighbourhood in G. In this case we

delete both x and y and replace them with a new vertex z with the same neighbourhood

as x and y. For vertices a in the neighbourhood of z we de�ne the weight function

w(za) = max{w(xa), w(ya)}. We keep doing this until the graph is prime. If the

algorithm selects an induced matching containing the edge za for some a in the resulting

prime graph, we simply take that to mean that the algorithm selects the edge (xa or ya)

in the original graph with the corresponding weight. 2

Corollary 34. For each �xed t, the k-Weighted Induced Matching (and therefore

also the k-Induced Matching) problem is �xed-parameter tractable in the class of

(Kt,t)-free bipartite graphs.

4.2.2 An fpt algorithm for A-free bipartite graphs

In this section, we develop an fpt algorithm for the k-Induced Matching problem in

the class of A-free bipartite graphs, where A is the graph represented in Figure 4.1. Since

A contains a C4, the class of A-free bipartite graphs extends C4-free bipartite graphs.

Clearly, the problem can be reduced to connected graphs. More importantly, by

Remark 3, the problem can be reduced to bipartite graphs which are prime.

Let G be a connected prime A-free bipartite graph. If G contains no C4, we apply

the fpt algorithm from the previous section (since C4 = K2,2). If G contains a C4, we

apply the following structural characterisation of G.
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Figure 4.1: The graph A

Lemma 35. Let G = (U, V,E) be a connected prime A-free bipartite graph, containing

a C4. Then the vertices of G can be partitioned into four subsets U0, U1, V0, V1 in such

way that U0 ∪V0 and U1 ∪V1 induce complete bipartite graphs, while U0 ∪V1 and U1 ∪V0

induce P6-free bipartite graphs.

Proof. Consider a connected prime A-free bipartite graph G = (U, V,E) containing a

C4 and let H = G[U0 ∪ V0] be a maximal (with respect to inclusion) complete bipartite

subgraph containing this C4. Also, for i ≥ 1, let Ui and Vi be the set of vertices in U and

V at distance i from U0 ∪ V0. Then U1 ∪ V1 induces a complete bipartite graph. Indeed,

assume for contradiction that a vertex a ∈ U1 is not adjacent to a vertex x ∈ V1. By

de�nition, amust have a neighbour b ∈ V0 and a non-neighbour c ∈ V0 (since otherwiseH

would not be a maximal complete bipartite subgraph containing the initial C4). Similarly,

x must have a neighbour y ∈ U0 and a non-neighbour z ∈ U0. But then a, b, c, x, y, z

induce an A.

Notice that each of U0 and V0 contains at least 2 vertices, which together with

the primality of G implies that U1 is not empty and V1 is not empty, since otherwise

any two vertices of U0 or V0 would have the same neighbourhood. As a result, we can

conclude that for all i > 1 the sets Ui and Vi are empty. Indeed, assume for contradiction

that U2 contains a vertex a. Then by de�nition it must have a neighbour x ∈ V1, while

x must have a neighbour c in U0. Since U1 is not empty, we may consider an arbitrary

vertex b ∈ U1, an arbitrary neighbour y ∈ V0 of b and an arbitrary non-neighbour (which

exists due to maximality of H) z ∈ V0 of b. But then a, b, c, x, y, z induce an A. This

contradiction shows that U2 is empty, and by symmetry we conclude that V2 is empty.

Assume now that G[U1 ∪ V0] contains an induced P6 = (x1, x2, x3, x4, x5, x6)

with x1, x3, x5 ∈ U1 and x2, x4, x6 ∈ V0, and let a be an arbitrary vertex in U0. Then

a, x1, x2, x3, x4, x6 induce an A in G. This contradiction proves that G[U1∪V0] is P6-free,

and by symmetry we conclude that G[U0 ∪ V1] is P6-free. 2

Corollary 36. The clique-width of A-free connected prime bipartite graphs containing a

C4 is bounded by a constant.
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Proof. It is known (see e.g. [Fouquet et al., 1999]) that the clique-width of bipartite

graphs in a given hereditary class is bounded if and only if it is bounded for graphs in

this class which are connected and whose bipartite complement is also connected.

Let C denote the class of connected prime A-free bipartite graphs containing a

C4. Let H be an induced subgraph of a graph in C. By Lemma 35, H either has

disconnected bipartite complement or it is a P6-free bipartite graph. Indeed, suppose H

is an induced subgraph of some graph G ∈ C and let U0, U1, V0, V1 be de�ned for the

graph G as in Lemma 35. If both V (H) ∩ (U0 ∪ V1) and V (H) ∩ (U1 ∪ V0) are non-

empty then these two sets of vertices must be in di�erent components of the bipartite

complement of H. Otherwise, one of these sets must be empty, in which case the graph

H is P6-free. However, P6-free bipartite graphs are known to have bounded clique-width

(see e.g. [Giakoumakis and Vanherpe, 2003]), which completes the proof. 2

For graphs of bounded clique-width, the Maximum Induced Matching prob-

lem is known to be solvable in polynomial-time [Kobler and Rotics, 2003]. This fact

together with Corollary 36 and an fpt algorithm for the k-Induced Matching problem

in the class of C4-free graphs, leads to the following conclusion.

Theorem 37. The k-Induced Matching problem is �xed-parameter tractable in the

class of A-free bipartite graphs.

4.3 Regular bipartite graphs

As we mentioned in the introduction, much attention has been given to the problem

in regular graphs. In particular, [Duckworth et al., 2002] and [Assiyatun, 2005] study

the problem in random regular graphs, while [Chlebík and Chlebíková, 2008; Duckworth

et al., 2005; Gotthilf and Lewenstein, 2006] study approximability of the problem in

regular graphs. This interest in regular graphs is partly due to the fact that the problem

remains NP-hard in this class. It is also known that the problem is NP-hard for bipartite

graphs of bounded degree. However, the complexity of the problem in regular bipartite

graphs was unknown. We answer this question negatively by showing that the problem

is APX-complete in k-regular bipartite graphs for any k ≥ 3, implying that there is a

constant c > 1 such that it is NP-hard to approximate the problem to within a factor

of c. An interesting subclass of regular bipartite graphs is the class of hypercubes. We

show that in this case the problem admits a simple solution.
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4.3.1 APX-completeness

In this section we show that the Maximum Induced Matching problem is APX-

complete in the class of r-regular bipartite graphs for any r ≥ 3. The proof follows from an

approximation preserving reduction. We use the L-reduction as de�ned in [Papadimitriou

and Yannakakis, 1991]. Let P be a maximisation problem. For every instance x of P , and

every solution y of x, let cP (x, y) be the cost of the solution y. Let optP (x) be the cost

of an optimal solution. If c ≥ 1 is a constant and there is a polynomial time algorithm

that computes a solution y(x), such that ∀x, cP (x, y(x)) ≥ 1
coptP (x), then the algorithm

is said to approximate P to within a ratio of c. If this holds for a constant c > 1, then

P is said to be constant-factor approximable and it belongs to the class APX. If, for any

positive ε, P has a polynomial time algorithm which approximates P to within a ratio

of ≤ 1 + ε, then we say that P has a polynomial-time approximation scheme (PTAS).

De�nition 38. Let P and Q be two maximisation problems. An L-reduction from P to

Q is a four-tuple (t1, t2, α, β), where t1 and t2 are polynomial time computable functions

and α and β are positive constants with the following properties:

(a) t1 maps instances of P to instances of Q and for every instance x of P , optQ(t1(x)) ≤
αoptP (x).

(b) For every instance x of P , t2 maps pairs (t1(x), y′) (where y′ is a solution of t1(x)) to

a solution y of x so that |optP (x)−cP (x, t2(t1(x), y′))| ≤ β|optQ(t1(x))−cQ(t1(x), y′)|.

As shown in [Papadimitriou and Yannakakis, 1991], if P and Q are maximisation

problems and there is an L-reduction from P to Q then if Q has a PTAS, P must also have

a PTAS. Conversely, the de�nition of APX-hardness implies that if P is APX-complete,

then Q is APX-hard. If furthermore Q is in APX, then it is APX-complete.

For any �nite set D of positive integers, we say a graph G is a D-graph if D is

the set of vertex degrees in G. For example a {k}-graph is a non-empty k-regular graph.

Theorem 39. Let D be a �nite set of positive integers such that maxd∈D d ≥ 3, then

Maximum Induced Matching is APX-complete in the class of bipartite D-graphs. In

particular, it is APX-complete in the class of k-regular bipartite graphs for any k ≥ 3.

Proof. The Maximum Induced Matching problem is known to be approximable

to within a constant factor in k-regular graphs [Zito, 1999]; so it remains to show it is

APX-hard.

For any �xed k ≥ 3, we de�ne the gadget Hk = (Vk, Ek) (see Figure 4.2) as

follows:
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The set of vertices is de�ned by Vk = L1 ∪ L2 ∪ L3 ∪ L4 ∪ L5 ∪ L6 with

L1 = {11, . . . , 1k}, L2 = {21, . . . , 2k}, L3 = {31, . . . , 3k(k−1)},
L4 = {41, . . . , 4k(k−1)}, L5 = {51, . . . , 5(k−1)2}, L6 = {61, . . . , 6(k−1)(k−2)}.

For i = 1, . . . , k − 1, we denote

Si3 = {3(i−1)k+1, . . . , 3ik}, Si4 = {4(i−1)k+1, . . . , 4ik},
Si5 = {5(i−1)(k−1)+1, . . . , 5i(k−1)}, Si6 = {6(i−1)(k−2)+1, . . . , 6i(k−2)}.

So |Si3| = |Si4| = k, |Si5| = k − 1 and |Si6| = k − 2.

The set of edges Ek is de�ned as follows:

(1) L1 ∪ L2 induces a matching of size k: (1i, 2i) ∈ Ek, i = 1, . . . , k.

(2) (2i, 3(i−1)(k−1)+j) ∈ Ek, i = 1, . . . , k, j = 1, . . . , k − 1.

(3) L3 ∪ L4 induces a matching: (3i, 4i) ∈ Ek, i = 1, . . . , k(k − 1).

(4) For every i = 1, . . . , k − 1, Si4 and Si5 induce a Kk,k−1.

(5) For every i = 1, . . . , k − 1, Si3 and Si6 induce a Kk,k−2.

Note that every vertex of L1 is of degree 1 in Hk while the other vertices are of

degree k. Note also that ∀i ∈ {1, . . . , k − 1}, N(Si3) ∩ L2 = {2i, 2i+1}.
For any graph G = (V,E) and any set of k vertices S = {v1, . . . , vk} ⊂ V , we

de�ne the graph G ∪S Hk obtained by adding an Hk to G and identifying L1 and S.

More formally its set of vertices is V ∪L2 ∪L3 ∪L4 ∪L5 ∪L6 and (G∪SHk)[V ] = G and

(G∪SHk)[S∪L2∪L3∪L4∪L5∪L6] = Hk. For any two graphs G = (V,E), G′ = (V ′, E′)

we denote G ∪G′ = (V ∪ V ′, E ∪ E′).

Lemma 40. For any k ≥ 3, {(3i, 4i), i = 1, . . . , k(k−1)} is a maximum induced matching

of Hk.

Proof. Note �rst that, since vertices 1i, i = 1, . . . , k are of degree 1 in Hk, for any

induced matching M of Hk containing an edge (2i, 3(i−1)(k−1)+j), with i ∈ {1, . . . , k}
and j ∈ {1, . . . , k − 1}, M \ {(2i, 3(i−1)(k−1)+j)} ∪ {(1i, 2i)} is also an induced matching.

Consequently, without loss of generality we can restrict ourselves to the case where M

does not contain any edge (u, v), u ∈ L2, v ∈ L3. For every i = 1, . . . , k − 1, we let

Mi = M ∩ [{(1i, 2i), (1i+1, 2i+1)} ∪ {(u, v), u ∈ Si3, v ∈ Si6} ∪ {(u, v), u ∈ Si4, v ∈ Si5}].
Note that |Mi| ≤ 3. Since edges (u, v), u ∈ Si3, v ∈ Si4 constitute an induced matching and
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Figure 4.2: Gadget Hk and example for k = 3.
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are only linked, inM , to edges belonging toMi,M
′ = M \Mi∪{(u, v), u ∈ Si3, v ∈ Si4} is

also an induced matching. Moreover, ifM contains an edge (u, v), u ∈ Si3, v ∈ Si4, then it

does not contain any edge (u′, v′), u′ ∈ Si3, v′ ∈ Si6 or any edge (u′′, v′′), u′′ ∈ Si4, v′′ ∈ Si5.
So |M ′| ≥ |M | and consequently, there is a maximum induced matching of Hk containing

edges (u, v), u ∈ L3, v ∈ L4. Since this matching is maximal, Lemma 40 follows. 2

A direct consequence of Lemma 40 is that there is a maximum induced matching

in G ∪S Hk containing {(3i, 4i), i = 1, . . . , k(k − 1)} and consequently

iµ(G ∪S Hk) = iµ(G) + k(k − 1) (4.1)

Moreover, if G is bipartite and S is monochromatic for a �xed 2-colouring of G,

then G ∪S Hk is also bipartite.

We can now describe the reduction. Let G = (V,E) be any bipartite D-graph.

Let us �rst note that for any positive integer d, G ∪Kd,d is a bipartite (D ∪ {d})-graph
and

iµ(G ∪Kd,d) = iµ(G) + 1 (4.2)

On the other hand, for any d ∈ D, let u1
d, . . . , u

p
d, p ≥ 1 denote the vertices of

degree d. Let k ≥ 3. We consider k copies of G denoted by G1, . . . , Gk and for any vertex

v ∈ V (G) we let S(v) denote the set of copies of v in G1, . . . , Gk (so |S(v)| = k). We

then de�ne:

T kd (G) = (G1 ∪ . . . ∪Gk) ∪S(u1d) Hk . . . ∪S(upd) Hk

Using relation (4.1) we immediately obtain:

iµ(T kd (G)) = kiµ(G) + pk(k − 1) (4.3)

It is also straightforward to verify that, if k ∈ D ∪ {d + 1}, d 6= k, then T kd (G)

is a bipartite (D \ {d} ∪ {d + 1})-graph. Since G ∪ Kd,d and T kd (G) can be performed

in polynomial time, relations (4.2) and (4.3) imply that the related reduction preserves

polynomial approximation schema.

The �rst of these is an L-reduction with α = 2, β = 1, where t1 maps G to G∪Kd,d

and t2 maps (G ∪Kd,d,M) to (G,M ′), where M ′ is the set of edges in M that do not

occur in the Kd,d. Since G is a D-graph, we know that iµ(G) ≥ 1, so the �rst inequality

in the de�nition of L-reduction holds. The second inequality follows from the fact that

49



at most one edge in the Kd,d can occur in M .

The second reduction is also an L-reduction with α = k(1+2(2∆(∆−1)+1)(k−1))

and β = 1/k, where ∆ = max(D). We de�ne to t1 to map G to T kd (G) and de�ne t2 to

map (T kd (G),M) to (G,M ′), where M ′ is the set of edges in M that belong to one of the

copies of G in T kd (G), where this copy of G is chosen so that the size of M ′ is maximised.

Indeed, observe that since the degree in G is bounded above by ∆, any edge in G is

linked to at most 2∆(∆−1) edges. Since D is made up of positive integers, the minimum

degree in G is at least 1, so there are at least n
2 edges in G. Thus iµ(G) ≥ n

2(2∆(∆−1)+1) .

Note that p ≤ n for this transformation. This means that

iµ(T kd (G)) = kiµ(G) + pk(k − 1)

≤ kiµ(G) + nk(k − 1)

≤ k(1 + 2(2∆(∆− 1) + 1)(k − 1))iµ(G)

as required by the �rst inequality in the de�nition of L-reduction. For the second in-

equality, consider (G,M ′) = t2(T kd (G),M). Let M ′′ consist of the edges in T kd (G) of the

form (3i, 4i) along those edges in in every copy of G in T kd (G) that correspond to the

edges in M ′. Then |M ′′| = k|M | + pk(k − 1). Using Lemma 40 as before, we conclude

that |M | ≤ |M ′′|, so

iµ(G)− |M ′| =
1

k
(kiµ(G) + pk(k − 1)− |M ′′|

≤ 1

k
(iµ(T kd (G))− |M |)

as required.

Consequently if the Maximum Induced Matching problem is APX-complete

in bipartite D-graphs, then for any positive integer d it is also APX-complete in bipartite

(D ∪ {d})-graphs and, using the transformation T d+1
d for any d ∈ D, d ≥ 2, it is also

APX-complete for bipartite (D \ {d} ∪ {d+ 1})-graphs.
The problem is shown to be APX-complete for bipartite {2, 3}-graphs [Duckworth

et al., 2005]. (More precisely, for any ε > 0, the problem of approximating Maximum

Induced Matching within a factor of 9570
9569 − ε is NP-hard for graphs in this class.)

Then, using the above remarks successively for d = 2, 3, . . . we deduce that it is APX-

complete in bipartite {3}-, {4}-, . . . , {k}-graphs for any k ≥ 3 and consequently, that it

is APX-complete in bipartite D-graphs for any �nite D with at least one element k ≥ 3.

2
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4.3.2 Hypercubes

The n-dimensional hypercube Qn is the graph with vertex set {0, 1}n, where two vertices
are adjacent if and only if they di�er in precisely 1 coordinate. Thus, the number of

vertices in Qn is 2n and every vertex has degree n, i.e. Qn is a regular graph. It is not

di�cult to see that Qn is also a bipartite graph, since vertices of the same parity are

necessarily non-adjacent. Hypercubes enjoy many more nice graph-theoretic properties

(see e.g. [Harary et al., 1988]). Nonetheless, there are algorithmic problems on hyper-

cubes for which no e�cient algorithms are known. This is the case, for instance, for the

crossing number and the size of a smallest maximal matching for which only bounds are

available (see e.g. [Forcade, 1973; Kainen, 1972]) and no e�cient algorithms to compute

the respective numbers are known. However, this is not the case for the size of a maxi-

mum induced matching. Below we present a simple formula for this number. The proof

is constructive and exhibits an easy way of �nding an induced matching of this size.

Theorem 41. For n ≥ 2, a maximum induced matching in the hypercube Qn has 2n−2

edges.

Proof. Consider the set of vertices M = {(x1, . . . , xn), x2 ≡ x3 + . . .+ xn mod(2)}. M
contains 2n−1 points. Note that x, y ∈M are neighbours in Qn if and only if they di�er

in the x1 coordinate, but do not di�er in any of the other coordinates. Therefore Qn[M ]

is an induced matching in Qn which contains 2n−2 edges.

Clearly this is optimal if n = 2. For n > 2, �x x1, . . . , xn−2 ∈ {0, 1} and consider

the points

(x1, . . . , xn−2, 0, 0), (x1, . . . , xn−2, 0, 1), (x1, . . . , xn−2, 1, 0), (x1, . . . , xn−2, 1, 1).

At most 2 of these points can be endpoints of edges in any induced matching in Qn.

Therefore in any induced matching in Qn, at most half of the vertices of Qn can be

endpoints of edges in the matching. So the number of edges in such a matching is at

most 2n−2. 2

4.4 Conclusion

In Theorem 39, we showed that the Maximum Induced Matching problem is APX-

complete for k-regular bipartite graphs. A few results with a constant multiplicative

error have been established for regular graphs [Duckworth et al., 2005; Gotthilf and
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Lewenstein, 2006; Zito, 1999], but no such results exist speci�cally for the bipartite case.

An interesting direction for future research is to investigate the approximation of the

Maximum Induced Matching problem in regular bipartite graphs and in particular

to see whether approximation results in regular graphs can be widely improved in the

bipartite case.

In [Duckworth et al., 2003], the problem was found to have a polynomial-time

approximation scheme in the class of bipartite graphs with the property that all the

vertices in one part of the partition have degree 2 and all the vertices in the other part

have degree 3. Since the problem is APX-complete in the class of bipartite {2,3}-graphs,

interesting approximation results may emerge from the study of bipartite instances where

all vertices in one part have degree 2 and all vertices in the other part have some other

degree d.

Since the problem, is �xed-parameter tractable in the class of (Ks,Kt,t)-free

graphs a natural question that arises is whether one can �nd a small problem kernel

in these classes (see [Downey and Fellows, 1999] for the technical de�nition of kernel).

Algorithms to obtain such kernels have been found in some subclasses of (Ks,Kt,t)-free

graphs (see e.g. [Moser and Sikdar, 2009]).
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Part II

Graph Partitions
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Chapter 5

Stable-Π Partitions

5.1 Introduction

Let Π be a graph property (or graph class), i.e. a set of graphs closed under isomorphism.

A property Π is hereditary if it is closed under taking induced subgraphs, and it is additive

if it is closed under taking disjoint unions of graphs.

For a property Π, the Stable-Π problem asks, given a graph G, to determine

whether G has an independent set S such that G − S ∈ Π. The family of Stable-

Π problems has been extensively studied in the literature (see e.g. [Brandstädt et al.,

1998; Cai and Corneil, 1996; Demange et al., 2005; Ekim and Gimbel, 2009; Garey et al.,

1976; Hell et al., 2004; Hoàng and Le, 2000; Huang and Chu, 2007; Stacho, 2008]) and

includes many important representatives such as Vertex 3-Colourability, in which

case Π is the set of all bipartite graphs, and Efficient Edge Domination (also known

as Dominating Induced Matching), in which case Π is the set of 1-regular graphs.

Both of these examples represent algorithmically hard, i.e. NP-complete, problems. The

Stable-Π problem is also NP-complete for various other properties Π such as forests or

trivially perfect graphs [Brandstädt et al., 1998]. More generally, the problem remains

NP-complete for any additive hereditary property Π other than the set of edgeless graphs

[Kratochvil and Schiermeyer, 1997].

On the other hand, for some properties Π, the Stable-Π problem can be solved

in polynomial time. This is the case, for instance, if Π is the class of co-bipartite graphs

[Brandstädt et al., 1998] or the class of complete bipartite graphs [Brandstädt et al.,

2005]. The case of co-bipartite graphs was generalised independently in [Alekseev et al.,

2004] and [Feder et al., 2003] to arbitrary hereditary properties Π which are of bounded

independence number and which can be recognised in polynomial time. The case where
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Π is the class of complete bipartite graphs has also received a wide generalisation. To

describe this generalisation, let us observe that the class of complete bipartite graphs is

quite small. In the terminology of [Balogh et al., 2000], it is subfactorial, i.e. for any

constant c > 0, Π has less than ncn labelled graphs on n vertices, if n is su�ciently large.

Subfactorial graph properties have a simple structural characterisation (see Theorem 42).

This was used in [Lozin, 2005] to prove that the Stable-Π problem is polynomial-time

solvable for any subfactorial hereditary property Π of bipartite graphs.

In the present chapter, we further generalise this result to arbitrary subfactorial

hereditary properties Π (not necessarily of bipartite graphs). Then we switch to hered-

itary properties with the factorial speed of growth, i.e. those containing at least nc1n

and at most nc2n labelled graphs on n vertices for some constants c1, c2 > 0, when n is

su�ciently large. The family of factorial graph properties is much wider and contains

many classes of theoretical or practical importance. For instance the classes of threshold

graphs, line graphs, permutation graphs, interval graphs are factorial and all classes of

graphs of bounded vertex degree, of bounded clique-width and all proper minor closed

graph classes have at most factorial speed of growth.

The family of factorial hereditary classes is very rich and varied, but there are

only a few such classes for which the complexity of the Stable-Π problem is known. It

is therefore natural to focus on the simplest classes in this family, namely those that are

minimal (when ordered by set inclusion). There are exactly nine such classes [Alekseev,

1997; Balogh et al., 2000]. Three of them are subclasses of bipartite graphs:

M1 bipartite matching graphs: graphs partitionable into two independent sets,

where the edges between them form a matching (equivalently, graphs of maximum

degree one)

M2 bipartite almost complete graphs: graphs partitionable into two independent

sets such that each vertex has at most one non-neighbour in the opposite part

M3 chain graphs: bipartite 2K2-free graphs

Three other minimal factorial classes are subclasses of co-bipartite graphs: these are

precisely the classes of complements of graphs in M1, M2 and M3, which we denote

by M1, M2, and M3, respectively. The remaining three minimal factorial classes are

subclasses of split graphs. They are also closely related toM1,M2 andM3 and can be

obtained from graphs in these classes by converting one of the independent sets in the

bipartition into a clique. We denote these classes as follows:
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M4 split matching graphs: graphs partitionable into a clique and an independent

set, where the edges between them form a matching

M4 complements of split matching graphs: graphs partitionable into a clique and

an independent set so that each vertex has at most one non-neighbour in the opposite

part

M5 threshold graphs: split P4-free graphs

It is known that Stable-M1 is an NP-complete problem [Mahadev and Peled, 1995],

while Stable-M5 is solvable in polynomial time [Brandstädt et al., 1998]. For the

remaining seven minimal factorial classes, the complexity of the problem was unknown

and we study it in the present chapter.

The borderline between factorial and subfactorial properties was also studied in

[Yannakakis, 1981] for the following problem associated with a hereditary class Π of

bipartite graphs: given a bipartite graph G, �nd the largest induced subgraph of G that

belongs to Π. Yannakakis [1981] showed that this problem is solvable in polynomial time

if Π is a subfactorial hereditary class, and is NP-hard otherwise (except for the case when

Π coincides with the class of all bipartite graphs, in which case the problem is trivial).

Inspired by this result, Lozin conjectured [Lozin, 2005] that the Stable-Π problem is

NP-complete for all hereditary factorial classes of bipartite graphs, including the three

minimal hereditary factorial classes. Contrary to this conjecture, we show that Stable-

Π is solvable in polynomial time for nearly all minimal hereditary factorial classes Π (not

necessarily bipartite).

Let us emphasise that these nine minimal classes of graphs are hereditary and

most of the instances of the Stable-Π problem that have been studied in the literature

deal with hereditary properties Π. On the other hand, some important examples of the

problem appear in the context of non-hereditary properties Π. We already mentioned

Efficient Edge Domination, which is equivalent to Stable-Π when Π is the set of

1-regular graphs. We denote the class of 1-regular graphs byMS
1 . Observe that this set

is a restriction of the classM1. More precisely,M1 is the hereditary closure of the set

of 1-regular graphs (i.e. it is the set containing all 1-regular graphs and all their induced

subgraphs). In the same spirit, we de�ne MS
2 to be the class of graphs partitionable

into two independent sets such that each vertex has exactly one non-neighbour in the

opposite part and de�ne MS
4 to be the class of graphs partitionable into a clique and

an independent set such that every vertex in one part has exactly one neighbour in the

opposite part. As before, we write MS
1 , MS

2 and MS
4 to denote the classes of graphs
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whose complements are inMS
1 ,MS

2 andMS
4 , respectively.

We �nd that for some minimal factorial classes Π for which Stable-Π can be

solved in polynomial time, the restriction to ΠS leads to an NP-complete problem. A

summary of our results is given in Table 5.1.

Π Stable-Π Stable-ΠS

M1 NP-C [Mahadev and Peled, 1995] NP-C [Grinstead et al., 1993]

M1 P Thm 47 P Thm 56
M2 P Thm 55 NP-C Thm 60

M2 P Thm 47 P Thm 56
M3 open n/a

M3 P Thm 47 n/a
M4 P Thm 48 NP-C Thm 58

M4 P Thm 49 NP-C Thm 59

M5 =M5 P [Brandstädt et al., 1998] n/a

Table 5.1: Summary of complexity results for Stable-Π.

5.2 Preliminaries

A graph property, or graph class is any set Π of simple graphs closed under isomorphism.

The graph-complement Π of a property Π is de�ned as Π =
{
G | G ∈ Π

}
. A graph

property is hereditary if it is closed under vertex removal, or equivalently, under taking

induced subgraphs. A hereditary graph property Π is factorial if there exist constants

c1, c2, N such that nc1n ≤ |Πn| ≤ nc2n when n > N , where Πn denotes the set of n-vertex

labelled graphs in Π. A class is subfactorial if for every c > 0, |Πn| ≤ ncn when n is

su�ciently large.

The structure of subfactorial classes is rather simple and can be characterised as

follows.

Theorem 42. [Alekseev, 1997; Balogh et al., 2000] For every subfactorial hereditary

class Π, there is a constant k (depending only on Π) such that for every graph G ∈ Π,

there exists a partition of V (G) into at most k subsets V1, . . . , Vk, where each subset Vi is

either an independent set or a clique in G, and for any two distinct subsets Vi, Vj, there

are either no edges or all possible edges between the vertices in Vi and the vertices in Vj.
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5.3 Subfactorial properties

Theorem 43. For any subfactorial hereditary property Π, the Stable-Π problem is

solvable in polynomial time.

Proof. The proof of this result is based on Theorem 42 and is similar to the proof in

[Lozin, 2005] of the case where Π is a class of bipartite graphs. We therefore only sketch

the proof.

Given a graph G = (V,E), we want to determine if there is a partition V = S∪R,
such that S is an independent set and G[R] ∈ Π. Let k be the constant associated with

the class Π. We call any partition of R satisfying Theorem 42 canonical and call the

subsets in a canonical partition bags.

We start by picking a representative for each bag. There are O(nk) ways to do

so. Once the set of representatives is �xed, which is our current set R, the adjacencies

between the bags are de�ned by the adjacencies between their representatives. For each

choice of at most k representatives, there are at most 2k ways to choose the type for

each bag (a clique or an independent set). Without loss of generality we may assume

that for each vertex v ∈ V −R there is at most one candidate bag for the inclusion of v,

since otherwise any two �similar� bags can be replaced by a single bag containing both

of them. If there is no candidate bag for v, we move it to S.

For the vertices v not in R∪ S we proceed as follows: if v has a con�ict in S (i.e.

has a neighbour in S) we move it to the respective bag of R, and if v has a con�ict in

R (i.e. moving it to its candidate bag in R makes the partition of R non-canonical) we

move it to S. If no vertex outside of R ∪ S has a con�ict in S or R, then the rest of the

task can be solved by a reduction to the 2Sat problem.

To this end, we associate with each vertex v 6∈ R ∪ S a Boolean variable xv. For

any two vertices u, v 6∈ R ∪ S, we create a set of clauses in the following way. If u and v

cannot both appear in R (because, for instance, they are adjacent, but their candidate

bags are not) we create the clause xu ∨ xv, and if they cannot both appear in S we

create the clause xu ∨ xv. It is easy to verify that the set of clauses created in this way

is satis�able if and only if there is proper partition of G in which every vertex v with

xv = true is placed in S and the remaining vertices are placed in R. 2
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5.4 Minimal factorial properties

In this section, we discuss the complexity of Stable-Π for minimal factorial hereditary

classes Π. We investigate each case as set out in the introduction to this chapter.

The following cases have already been established in the literature.

Theorem 44. [Mahadev and Peled, 1995] The Stable-M1 problem is NP-complete.

Theorem 45. [Brandstädt et al., 1998] The Stable-M5 problem is solvable in polyno-

mial time.

Further results in this section are based on the notion of Sparse-Dense partitions:

Theorem 46. (Sparse-Dense Theorem) [Alekseev et al., 2004; Feder et al., 2003]

For all positive integers k, l, there exists a polynomial time algorithm that, given a graph

G, constructs all partitions of its vertex set into sets A,B such that G[A] contains no

independent set of size k and G[B] contains no clique of size l.

Namely, there are at most n2R(k,l)−2 such partitions of an n-vertex graph G and

all can be enumerated in time O
(
n2R(k,l)+max{k,l}), where R(k, l) denotes the Ramsey

number of k and l.

Theorem 47. The Stable-M1, Stable-M2, and Stable-M3 problems are solvable

in polynomial time.

Proof. Let Π ∈ {M1,M2,M3}. All three problems ask to partition vertices of the

input graph G into one independent set V1, and a co-bipartite graph V ′1 (consisting of two

cliques V2 and V3). By Theorem 46, there are only polynomially many such partitions of

V (G) and all of them can be found in polynomial time. For each such partition, we test

whether the co-bipartite subgraph of G induced V ′1 is in Π. This yields a polynomial-time

algorithm. 2

Theorem 48. The Stable-M4 problem is solvable in polynomial time.

Proof. We rephrase the problem as: given a graph G, decide whether the vertices of

G can be partitioned into three sets V1, V2, V3 such that V3 is a clique, V1 and V2 are

independent sets and every vertex in V2 has at most one neighbour in V3 and vice-versa.

Let G be the input graph. By Theorem 46, we can �nd, in polynomial time, the

collection P of all partitions of the vertex set of G into a clique C and a set X such that

G[X] contains no clique of size three. Note that if G admits a Stable-M4 partition

V1, V2, V3, then the partition C = V3, X = V1 ∪ V2 is a partition in P. Thus to solve the
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problem, we try all partitions C,X in P by setting V3 = C and testing whether X can

be split into V1, V2 so that V1, V2, V3 is a Stable-M4 partition of G.

Let C,X be a partition from P. We construct an instance I of 2Sat:

(i) Create a variable xv for every vertex v ∈ X,

(ii) for every edge uv ∈ E(G[X]), add the clauses (xu ∨ xv) and (xu ∨ xv),

(iii) for every pair of vertices u, v ∈ X with a common neighbour in C, add the clause

(xu ∨ xv),

(iv) for every vertex v ∈ X such that v has at least two neighbours in C, add the clauses

(xv ∨ a) and (xv ∨ a), where a is a new variable.

We claim that I has a satisfying assignment if and only if G admits a Stable-M4

partition V1, V2, V3 such that V3 = C and V1 ∪ V2 = X.

Suppose that the instance I has a satisfying truth assignment ϕ. Namely, ϕ is a

mapping from the variables of I to {true, false} such that in every clause Cj , there is at

least one literal that ϕ evaluates to true (where the value ϕ(z) is de�ned as the negation

of ϕ(z), for any variable z)

De�ne V1 = {v | ϕ(xv) = false} and V2 = {v | ϕ(xv) = true}. We claim that

V1, V2, V3 is a Stable-M4 partition of G. Indeed, by (ii), V1 and V2 are independent

sets; by (iii), no two vertices in V2 have a common neighbour in V3; by (iv), every vertex

from V2 has at most one neighbour in V3.

Conversely, let V1, V2, V3 be a Stable-M4 partition ofG where V3 = C. We de�ne

a truth assignment for I as follows. We set ϕ(xv) = false if v ∈ V1 and ϕ(xv) = true

if v ∈ V2. For each of the new variables a de�ned in (iv) above, we set ϕ(a) = true.

We claim that ϕ is a satisfying truth assignment for I. Indeed, all clauses de�ned in (ii)

are satis�ed, since V1 and V2 are independent sets. Also, all clauses de�ned in (iii) are

satis�ed as every vertex in V3 has at most one neighbour in V2. Similarly, every vertex in

V2 has at most one neighbour in V3 implying that all clauses in (iv) are satis�ed. Thus

I is satis�ed by ϕ. That concludes the proof. 2

A similar argument works for the complementary class and results in the following

theorem.

Theorem 49. The Stable-M4 problem is solvable in polynomial time.
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Proof. Similarly to the proof of Theorem 48, we can rephrase the problem as: given

a graph G, decide whether the vertices of G can be partitioned into three sets V1, V2, V3

such that V3 is a clique, V1 and V2 are independent sets and every vertex in V2 has at

most one non-neighbour in V3 and vice-versa.

Again, de�ning P as before, we solve the problem by trying all partitions C,X in

P. For each such partition we set V3 = C and test whether X can be split into V1, V2 so

that V1, V2, V3 is a Stable-M4 partition of G.

Let G′C be the graph obtained from G by complementing (i.e. replacing edges

by non-edges and vice versa) the edges between C and X. Now G has a Stable-M4

partition with V3 = C if and only if G′C has a Stable-M4 partition with V3. Indeed, if

V1 ∪ V2 is a partition of X, then G[C] is a clique and G[V1], G[V2] are independent sets

if and only if G′C [C] is a clique and G′C [V1], G′C [V2] are independent sets. Further, each

vertex in V2 (resp. V3) has at most one non-neighbour in V3 (resp. V2) in G if and only

if it has at most one neighbour in V3 (resp. V2) in G
′
C .

We now reduce the problem to an equivalent instance of 2Sat as in the proof of

Theorem 48. This concludes the proof. 2

We are left with the case of the Stable-M2, which needs more work. We solve

this in the following section.

5.4.1 The Stable-M2 problem

In this section, we prove that the Stable-M2 problem is solvable in polynomial time.

We cast the problem for the complement and solve (in polynomial time) a more

general version with lists as follows.

An instance of the problem is a pair (G, `) where G is a graph and ` : V (G) →
2{1,2,3}. We say that `(v) is the list belonging to the vertex v. For S ⊆ {1, 2, 3}, we let

U `S denote the set of vertices in G with `(v) = S.

Given an instance (G, `), we seek to partition V (G) into three cliques V1, V2, V3

such that

• each vertex in V2 has at most one neighbour in V3,

• each vertex in V3 has at most one neighbour in V2, and

• for all α ∈ {1, 2, 3}, each v ∈ Vα satis�es α ∈ `(v).
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Input: Instance (G, `) where G is a graph and `(v) : V (G)→ 2{1,2,3}

Output: A reduced instance (G, `)

1 for α ∈ {1, 2, 3} do
2 if for u ∈ U `{α}, there exists v ∈ V (G) \N(u) with α ∈ `(v) then

remove α from `(v) and goto 1

3 for (α, β) ∈
{

(2, 3), (3, 2)
}
do

4 if for u ∈ U `{α}, there exists v ∈ N(u) ∩ U `{β} then
for all w ∈ N(u) \ {v} with β ∈ `(w), remove β from `(w)
for all w ∈ N(v) \ {u} with α ∈ `(w), remove α from `(w)
remove u, v from G and goto 1

5 if there exists v ∈ U `{1,β} with |N(v) ∩ U `{α}| ≥ 2 then

remove β from `(v) and goto 1

6 if for u ∈ U `{α}, there are v, w ∈ N(u) ∩ U `{1,β} where
(N(v) \N(w)) ∩ U `{1,α} 6= ∅ then
remove β from `(v) and goto 1

7 if for u ∈ U `{α}, there are v, w ∈ N(u) ∩ U `{1,β} and x ∈ U
`
{1,α} with

v, w 6∈ N(x) then
remove 1 from `(x) and goto 1

8 if for u ∈ V (G) with 1 ∈ `(u), the set U `{1,α} \N(u) is not a clique then

remove 1 from `(u) and goto 1

9 if for u ∈ V (G) with β ∈ `(u), the subgraph G
[
N(u) ∩ U `{1,α}

]
contains

an induced 4-cycle, 2K2, or P4 then

remove β from `(u) and goto 1

10 return (G, `)
Algorithm 1: Reduction algorithm

If such a partition exists, we call it a solution for (G, `). Note that if the list of some

vertex is empty, then there is no solution for the problem instance. Thus for the rest of

the proof, we assume that U `∅ = ∅.
To solve the problem, we consider several special cases and reduce the general

case to these cases in polynomial time.

First, we consider the procedure depicted in Algorithm 1. We say that an instance

(G, `) is reduced, if it is the result of Algorithm 1.

We have the following claim:

Lemma 50. Let (G, `) be an instance and let (G′, `′) be the result of applying Algorithm

1 to (G, `). Then there exists a solution for (G, `) if and only if there exists a solution

for (G′, `′).
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Proof. If x ∈ U `{i} for some i ∈ {1, 2, 3}, then in any solution (V1, V2, V3) of the instance,

we must have x ∈ Vi.

Line 2: Let α ∈ {1, 2, 3}. Since Vα must be a clique in any solution, if u ∈ U `{α} and
u, v are not adjacent, then v 6∈ Vα for any solution for (G, `).

Line 4: If u, v are adjacent for some u ∈ U `{α} and v ∈ U
`
{β}, then in any valid solution,

these must be two matched vertices of V2 and V3. In this case v must be the unique

neighbour of u in Vβ and u must be the unique neighbour of v in Vα. We therefore

remove either α or β from the list of each vertex in N(u)∪N(v) \ {u, v}, as appropriate.
We then remove u and v from G. The resulting instance has a solution if and only if the

original one does.

Line 5: In any solution, if v ∈ Vβ , then v can have at most one neighbour in Vα.

Line 6: Suppose u ∈ U `{α}, such that v, w ∈ N(u)∩U `{1,β} and z ∈ (N(v)\N(w))∩U `{1,α}.
If there were a solution in which v ∈ Vβ then since u ∈ Vα and every vertex in Vα can

have at most one neighbour in Vβ and vice versa, we must have w, z ∈ V1. But this is

impossible, since w, z are not adjacent. This contradiction implies that v cannot be in

Vβ .

Line 7: Suppose u ∈ U `{α}, x ∈ U
`
{1,α} and v, w ∈ (N(u) \N(x)) ∩ U `{1,β}. Then in any

solution we must have u ∈ Vα. Since u can have at most one neighbour in Vβ , at least

one of v, w must be in V1. But V1 is a clique and v, w are nonadjacent to x. Thus x 6∈ V1.

Line 8: Suppose u ∈ V (G) with 1 ∈ `(u) and v, w ∈ U `{1,α} \ N(u) with v, w non-

adjacent. Since for any solution, Vi must be a clique for i ∈ {1, 2, 3}, exactly one of v, w

must be in V1 and the other in Vα. But u is non-adjacent to both v and w, so u 6∈ V1.

Line 9: Suppose β ∈ `(u). In any solution, if u ∈ Vβ then N(u) ∩ V1 must be a clique

and u can have at most one neighbour in Vα. The 4-cycle, 2K2 and P4 are neither cliques,

nor are they partitionable into a clique and a single vertex. Thus if any of these three

graphs is an induced subgraph of N(u) ∩ U `{1,α}, then any solution must satisfy u 6∈ Vβ .
2

Note that Algorithm 1 has polynomial running time. This allows us to assume

that the instance we consider is always reduced. (If not, we use Algorithm 1 to produce

an equivalent reduced instance.)

Assuming this, we consider the some special cases of the problem, which we will

later use as steps in �nding a solution for the general problem.
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Lemma 51. If there exists a solution (V1, V2, V3) for the reduced instance (G, `), such that

there is no edge between a vertex in V2 and a vertex in V3, it can be found in polynomial

time.

Proof. This amounts to �nding a partition of G into an independent set and a complete

bipartite graph, in a way that respects the lists of the vertices. This can been solved in

polynomial time [Feder et al., 2003]. 2

Lemma 52. If U `{1,2,3} = U `{2,3} = ∅, and U `{1,2} = ∅ or U `{1,3} = ∅, and the instance is

reduced, the problem can be solved in polynomial time.

Proof. We may assume by symmetry that U `{1,3} = ∅ and we reduce the problem to an

instance of 2Sat constructed as follows.

• For each vertex x ∈ U `{1,2}, introduce a new variable vx.

• For all z ∈ U `{3} and all x, y ∈ N(z) ∩ U `{1,2}, add clause (¬vx ∨ ¬vy).

• For all x, y ∈ U `{1,2} with xy 6∈ E(G), add clauses (vx ∨ vy), (¬vx ∨ ¬vy).

Since (G, `) is a reduced instance, it has a solution if and only if the above instance

of 2Sat is satis�able. In particular, if ϕ is a satisfying assignment, the following sets

(V1, V2, V3) form a solution for (G, `).

V1 = U `{1} ∪ {x | ϕ(vx) = false} V2 = U `{2} ∪
(
U `{1,2} \ V1

)
V3 = U `{3} 2

Lemma 53. If U `{1,2,3} = U `{2,3} = ∅ and U `{1,2}, U
`
{1,3} are cliques of G, and the instance

is reduced, the problem can be solved in polynomial time.

Proof. We show that the following is a solution for (G, `)

V2 = U `{2} V3 = U `{3} ∪
(
U `{1,3} \ V1

)V1 = U `{1} ∪ U
`
{1,2} ∪

⋃
u∈U`

{2}
|N(u)∩U`

{1,3}|≥2

(
N(u) ∩ U `{1,3}

)

Indeed, note that the instance (G, `) is reduced. By Line 2 of Algorithm 1 and

the fact that U `{1,3} is a clique, we conclude that V2 and V3 must be cliques. By Line

4 of Algorithm 1 and the de�nition of V1 and V3, every vertex in V2 has at most one

neighbour in V3. By Lines 4 and 5 of Algorithm 1, each vertex of V3 has at most one

neighbour in V2. By Line 2 of Algorithm 1 and since U `{1,2}, U
`
{1,3} are cliques, we need

only verify that every vertex in V1 ∩U `{1,2} is adjacent to every vertex in V1 ∩U `{1,3}. We
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therefore assume that these sets are not empty. Let u ∈ U `{2} and v, w ∈ N(u) ∩ U `{1,3}.
By Line 7 of Algorithm 1, any vertex in U `{1,2} must be adjacent to at least one of v or w.

But by Line 6 of Algorithm 1, the vertices v, w have the same neighbourhood in U `{1,2}.

Thus every vertex of U `{1,2} must be adjacent to every vertex of V1∩U `{1,3}. We therefore

conclude that V1 is indeed a clique. 2

We can now generalise Lemmas 52 and 53 as follows:

Lemma 54. If U `{1,2,3} = U `{2,3} = ∅, and the problem instance is reduced, the problem

can be solved in polynomial time.

Proof. Assume that U `{1,2,3} = U `{2,3} = ∅, but Lemma 52 does not apply. Thus

U `{1,2} 6= ∅ and U
`
{1,3} 6= ∅. We �x any u ∈ U `{1,2}. Then we either do nothing, or choose

w ∈ N(u) ∩ U `{1,3} and set `(w) = {3}. After that, we remove 3 from `(v) for each

v ∈ N(u) that belongs to a non-trivial (≥ 2 vertices) connected component of G
[
U `{1,3}

]
unless that component contains w (if w exists).

If after these modi�cations U `{1,3} is still non-empty, we similarly �x u′ ∈ U `{1,3},
do nothing or set `(w′) = {2} for some w′ ∈ N(u′) ∩ U `{1,2}, and then remove 2 from

`(v) for each v ∈ N(u′) ∩ U `{1,2} in a non-trivial component of G
[
U `{1,2}

]
unless that

component contains w′ (if w′ exists).

We try all possible choices for w and w′, creating O(n2) instances. It follows that

the initial instance has a solution if and only if one of these O(n2) instances has.

Consider the O(n2) instances produced in this way from the initial instance (G, `).

First, we show that (G, `) has a solution if and only if (at least) one of the O(n2) instances

has a solution.

Clearly, if one of the O(n2) instances has a solution, then this is also a solution

for (G, `), since during the construction of the instances, we only remove elements from

lists.

Conversely, suppose that there exists a solution V1, V2, V3 for (G, `). Let H =

G[U `{1,3}], i.e. H denotes the subgraph of G induced by U `{1,3}, and consider the vertex

u ∈ U `{1,2} that we �x.

Case(i): Suppose that u ∈ V1. There are two possibilities to consider. First, suppose

that there exists a neighbour of u that is in V3 and also in some non-trivial connected

component of H. Consider the instance where we choose w to be this neighbour (We

shall henceforth refer to it as the �modi�ed� instance.) In this instance, we remove 3 from

each neighbour of u in V (H) = U `{1,3} that belongs to a non-trivial connected component

of H unless that component contains w.
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We claim that each such neighbour v belongs to V1. Suppose otherwise. Then v

belongs to V3, since `(v) = {1, 3}. Recall that v is in a non-trivial connected component

of H. Thus it has a neighbour z in H. We conclude that z is non-adjacent to v in H, and

hence, in G. If z is also non-adjacent to u, then z can be neither in V1 nor in V3, as these

are both cliques. But then V1, V2, V3 cannot be a solution for (G, `) as `(z) = {1, 3}. So,
we conclude that z is adjacent to u.

Now, recall that w is also in a non-trivial connected component of H. So, w

has a neighbour x in this component, and we conclude that xw 6∈ E(G). This implies

ux ∈ E(G) as otherwise V1, V2, V3 is not a solution. But now x, z, w, v induce a 4-cycle in

the neighbourhood of u, which is impossible by Line 9 of Algorithm 1. (For this, recall

that (G, `) is a reduced instance and that the connected component of H containing w

and x is di�erent from the one containing v and z.)

This proves that V1, V2, V3 is also a solution to the modi�ed instance. As this is

one of the O(n2) instances, we are done.

So, we may assume that each neighbour of u in V3 ∩ V (H) is itself a connected

component (isolated vertex) of H. In this case, we consider the instance where we do

not choose w (referred to as the �modi�ed� instance). In this instance, we remove 3 from

each neighbour of u in V (H) that belongs to a non-trivial connected component of H.

By our assumption, this does not modify the lists of the neighbours of u in V3 ∩ V (H).

Thus V1, V2, V3 is a solution to the modi�ed instance, and we are again done.

Case(ii): Suppose that u ∈ V2. If u has a neighbour in V3∩V (H), consider the instance

where w is chosen to be this neighbour (referred to as the �modi�ed� instance). In this

instance, we remove 3 from each neighbour of u in a non-trivial connected component

of H unless that component contains w. Clearly, any such vertex v cannot belong to

V3, since then u has two neighbours in V3, which is impossible. Thus V1, V2, V3 is also a

solution to the modi�ed instance, and we are done.

Finally, suppose that u has no neighbour in V3∩V (H), and consider the instance

where we do not choose w. Again, we remove 3 from every neighbour of u in a non-trivial

component of H, and conclude that V1, V2, V3 is a solution to this modi�ed instance, since

we assume that N(u) ∩ V (H) ∩ V3 = ∅. This completes all cases.

This proves that one of the choices for w must succeed if (G, `) has a solution. By

a symmetric argument, it follows that, for an appropriate choice of w, one of the choices

for w′ (if at all we consider w′) must also succeed. This concludes the �rst argument.

For the second argument, consider one of the O(n2) instances (G+, `+). We

constructed this instance from the initial instance (G, `), by �xing a vertex u and choosing

66



w (or not), and then �xing a vertex u′ (if possible) and choosing w′ (or not). We also

reduced this instance using Algorithm 1.

We shall now prove that U `
+

{1,2} and U
`+

{1,3} are both cliques of G, i.e. that Lemma

53 can be applied. Suppose otherwise, and assume �rst that U `
+

{1,3} contains non-adjacent

vertices v, v′. As `+ is a reduction of `, we conclude that v, v′ are also vertices in U `{1,3}.

Again, use H to denote the graph G[U `{1,3}].

First, we observe that u is adjacent to at least one of v, v′. Indeed, if u is non-

adjacent to both v and v′, then 1 was removed from `(u) in Line 8 of Algorithm 1 (recall

that (G, `) is a reduced instance). This is impossible as `(u) = {1, 2}. By symmetry, we

shall assume that u is adjacent to v.

Now, if w was not chosen when constructing (G+, `+), then 3 was removed from

all neighbours of u in non-trivial connected components of H. One of these components

contains both v and v′ as they are non-adjacent, and so 3 was removed from `(v) when

constructing `+ (recall that we assume that u is adjacent to v). However, this is im-

possible, since `+(v) = {1, 3}. We similarly arrive at a contradiction when w is chosen,

but it is not a vertex of the connected component of H containing v. So we conclude

that w was chosen from the connected component of H containing v. But now, we have

that either v = w, or, since (G+, `+) is reduced, 1 or 3 was removed from `(v) in Line 2

at some point when running Algorithm 1 to produce the instance (G+, `+). This is, of

course, impossible as `(w) = {3} and `+(v) = {1, 3}. This concludes the argument for

U `
+

{1,3}.

The argument for U `
+

{1,2} is similar, using u′ and w′. Finally, note that if u′ (and

hence w′) cannot be chosen because the �rst modi�cation of lists removed all candidates,

then the Lemma 52 can be applied. 2

We are ready to discuss the general case and prove the main theorem of this

section.

Theorem 55. The Stable-M2 problem is solvable in polynomial time.

Proof. First, we test whether or not (G, `) we are in the situation of Lemma 51. If so,

we �nd a solution for (G, `) using [Feder et al., 2003]. If not, we conclude that if there is a

solution (V1, V2, V3) for (G, `), then there must exist u ∈ V2 and v ∈ V3 with uv ∈ E(G).

We try all possible choices for such a pair u, v. This reduces the problem to solving

O(n2) separate instances. For each such choice u, v, we set `(u) = {2}, `(v) = {3},
and run Algorithm 1. If the list of some vertex becomes empty, we reject this choice

of u, v. Otherwise, we observe that the resulting reduced instance (G+, `+) satis�es
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U `
+

{1,2,3} = U `
+

{2,3} = ∅. So we can apply Lemma 54 and we try to �nd a solution for

(G+, `+), if it exists, as described above. This concludes the proof of Theorem 55. 2

5.5 Restricted Minimal Factorial Properties

First, we brie�y examine the polynomial-time cases. Using essentially the same argu-

ments as in the proof of Theorem 47, we obtain the following.

Theorem 56. The Stable-MS
1 and Stable-MS

2 problems are solvable in polynomial

time.

All the remaining cases are hard. We discuss them in separate claims.

All the subsequent proofs will be essentially along the same lines and based on

the following useful lemma.

Lemma 57. Any instance of One-In-Three-3Sat can be transformed in polynomial

time to an equivalent instance of One-In-Three-3Sat such that:

(i) There is no clause of the form (X ∨X ∨ Y ) or (X ∨X ∨ Y )

where X and Y are (not necessarily distinct) literals.

(ii) If X appears in some clause, then X also appears in some clause.

(iii) Every literal appears at least twice in the instance.

(iv) There are at least 4 clauses and at least 4 variables in the instance.

Proof. Apply the following steps in order. First, for each clause of the form (X∨X∨Y ),

replace it by the clauses (u∨v∨X), (u∨v∨X), (w∨ z∨Y ), (w∨ z∨Y ), where u, v, w, z

are new variables. Next, for each clause of the form (X∨X∨Y ), replace it by the clauses

(u ∨ v ∨ Y ), (u ∨ v ∨ Y ), where u, v are new variables. Then, for each literal X, add the

clauses (u ∨ v ∨X), (u ∨ w ∨X), (v ∨ w ∨ z), (v ∨ w ∨ z), (v ∨ w ∨ z), where u, v, w, z
are new variables. Note that since the original instance was non-empty, the new instance

must now have at least 4 clauses and at least 4 variables. Finally, make a copy of each

clause, i.e. make each clause appear twice in the instance.

It is easy to see that the instance produced in this way is equivalent to the original

instance and satis�es all the conditions of the lemma. 2

Theorem 58. The Stable-MS
4 problem is NP-complete.

68



Proof. We can rephrase the problem as follows: given a graph G, decide whether the

vertices of G can be partitioned into 3 sets V1, V2, V3 such that V3 is a clique, V1 and V2

are independent sets and the edges between V2 and V3 form a perfect matching.

The proof proceeds by reduction from One-In-Three-3Sat. Consider an in-

stance I of the problem, namely the instance consists of m clauses C1, . . . , Cm containing

variables v1, . . . , vn. We may assume it satis�es the properties listed in Lemma 57. Let

Ji denote the set of indices j such that vi appears in Cj . Let Ji denote the indices j such

that vi appears in Cj .

For the instance I, we construct the graph GI as follows. First, we create a

complete graph on vertices y1, . . . , ym. Then for every occurrence of a variable vi (resp.

vi) in a clause Cj , we add a new vertex xi,j (resp. xi,j) and we add an edge between yj

and xi,j (resp. xi,j). Finally, we add an edge between xi,j and xi,` for all i ∈ {1, . . . , n},
all j ∈ Ji and all ` ∈ Ji.

We prove that GI admits a Stable-MS
3 partition if and only if I has a satisfying

truth assignment (as an instance of One-In-Three-3Sat).

Suppose that the instance I has a satisfying truth assignment ϕ. In other words, ϕ

is a mapping from {v1, . . . , vn} to {true, false} such that for every clause Cj , ϕ evaluates

exactly one of the literals in Cj to true, where ϕ(vi) is de�ned as the negation of ϕ(vi).

Let us de�ne a partition of V (GI) as follows:

V1 =
{
xi,j

∣∣∣ j ∈ Ji ∧ ϕ(vi) = false
}
∪
{
xi,j

∣∣∣ j ∈ Ji ∧ ϕ(vi) = true
}
,

V2 =
{
xi,j

∣∣∣ j ∈ Ji ∧ ϕ(vi) = true
}
∪
{
xi,j

∣∣∣ j ∈ Ji ∧ ϕ(vi) = false
}
,

V3 =
{
yj

∣∣∣ j ∈ {1, . . . ,m}}.
It is not di�cult to verify that V1 and V2 are independent sets of GI , that V3 is

a clique, and that the edges between V2 and V3 form a perfect matching. Indeed, each

vertex yj in V3 is adjacent to a unique vertex xi,j or xi,j in V2, namely the one for which

vi, resp. vi is the literal of Cj that ϕ evaluates to true. Thus GI admits a Stable-MS
3

partition as required.

Conversely, suppose that GI admits a Stable-MS
3 partition. In other words,

there exists a partition of V (GI) into three sets V1, V2, V3 such that V1, V2 are independent

sets, V3 is a clique, and the edges between V2 and V3 form a perfect matching.

First, we show that we must have V3 = {yj | j ∈ {1, . . . ,m}}. By Lemma 57,

there are at least four yj 's. Thus, since V1 and V2 are independent sets, V3 must contain

at least two yj 's. This implies that V3 contains no xi,j or xi,j , since each has at most one

neighbour in {y1, . . . , ym} and V3 is a clique. It also implies that if yj ∈ V2 for some j,
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then yj has at least 2 neighbours in V3, which is a contradiction. Finally, suppose that

yj ∈ V1 for some j. Consider a neighbour z 6∈ {y1, . . . , ym} of yj . (Note that z is xi,j or

xi,j for some i and there are exactly three such vertices). Then z is not in V3, since V3

contains no xi,j or xi,j . Also, z cannot be in V1, since V1 is independent. Thus z must

be in V2. But z has a unique neighbour in {y1, . . . , ym}, namely yj , and hence, z does

not have a neighbour in V3, a contradiction. This proves that V3 = {y1, . . . , ym}.
Now, we de�ne the following truth assignment ϕ : {v1, . . . , vn} → {true, false}.

For each i ∈ {1, . . . , n}, we set ϕ(vi) = true if xi,j ∈ V2 for some j, and set ϕ(vi) = false

otherwise. We prove that ϕ is a satisfying truth assignment for the instance I, which
will conclude the proof.

Using the assignment ϕ, we prove that

V1 =
{
xi,j

∣∣∣ j ∈ Ji ∧ ϕ(vi) = false
}
∪
{
xi,j

∣∣∣ j ∈ Ji ∧ ϕ(vi) = true},

V2 =
{
xi,j

∣∣∣ j ∈ Ji ∧ ϕ(vi) = true
}
∪
{
xi,j

∣∣∣ j ∈ Ji ∧ ϕ(vi) = false
}
.

To show this, recall that for each i ∈ {1, . . . , n}, every xi,j is adjacent to every xi,`
where j ∈ Ji and ` ∈ Ji. Thus if ϕ(vi) = true, then xi,j ∈ V2 for some j which implies

xi,` ∈ V1 for all ` ∈ Ji, since V2 is an independent set. Therefore, xi,j ∈ V2 for all j ∈ Ji,
since V1 is an independent set. Similarly, if ϕ(vi) = false, then xi,j ∈ V1 for all j ∈ Ji,
and hence, xi,` ∈ V2 for all ` ∈ Ji.

Now, consider a clause Cj . Recall that yj ∈ V3, and hence, it has exactly one

neighbour xi,j or xi,j in V2 corresponding to the literal vi, resp. vi in Cj , which ϕ

evaluates to true by the above. So, all other neighbours xi′,j or xi′,j of yj belong to V1

and thus correspond to literals vi′ , resp. vi′ which ϕ evaluates to false. This proves that

Cj is satis�ed by ϕ, and thus, proves that ϕ is a satisfying truth assignment.

That concludes the proof. 2

A similar constructions also work for the two following cases:

Theorem 59. The Stable-MS
4 problem is NP-complete.

Proof. Again, we rephrase the problem as: given a graph G, decide whether the

vertices of G can be partitioned into 3 sets V1, V2, V3 such that V3 is a clique, V1 and

V2 are independent sets and the edges between V2 and V3 form the complement of a

perfect matching.

The proof will now follow essentially the same steps as the proof of Theorem 58.

We proceed by reduction from One-In-Three-3Sat.
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Consider an instance I of the problem, namely the instance consists of m clauses

C1, . . . , Cm containing variables v1, . . . , vn. Again, we may assume it satis�es the prop-

erties listed in Lemma 57, and we de�ne Ji to be the set of indices j such that vi appears

in Cj , and de�ne Ji to be the set of indices j such that vi appears in Cj .

For the instance I, consider the graph GI constructed in the proof of Theorem

58. Let G+
I be the graph constructed from GI by complementing the edges between

{y1, . . . , ym} and the rest of the graph. Namely, for each i ∈ {1, . . . ,m}, the vertex yi is
adjacent to z 6∈ {y1, . . . , ym} in G+

I if and only if yi is not adjacent to z in GI . All other

edges remain the same.

We prove that G+
I admits a Stable-MS

4 partition if and only if I has a satisfying
truth assignment (as an instance of One-In-Three-3Sat).

For the forward direction, we note that, by the proof of Theorem 58, if GI admits

a Stable-MS
4 partition V1, V2, V3, then V3 = {y1, . . . , ym}. Thus, this is also a Stable-

MS
4 partition of G+

I . This proves that if I has a satisfying truth assignment, then G+
I

admits a Stable-MS
4 partition.

Conversely, suppose that G+
I admits a Stable-MS

4 partition. Namely, let V1, V2,

V3 be a partition of V (GI) such that V1, V2 are independent sets, V3 is a clique, and the

edges between V2 and V3 form the complement of a perfect matching.

We shall prove that V3 = {y1, . . . , ym}. By the construction of G+
I , this will imply

that V1, V2, V3 is also a Stable-MS
3 partition of GI . Thus, by the proof of Theorem 58,

this will allow us to conclude that I has a satisfying truth assignment.

Consider a vertex yj . By Lemma 57, there is a variable vi such that neither

vi nor vi appears in the clause Cj . Moreover, vi appears as a literal in at least two

clauses, say Cj1 and Cj2 , and vi appears in two other clauses, say Cj3 and Cj4 . This

implies that G+
I contains vertices xi,j1 , xi,j2 , xi,j3 , xi,j4 which induce a 4-cycle and are

all adjacent to yj . Suppose that yj ∈ V1. Since V1 is an independent set, we conclude

that xi,j1 , xi,j2 , xi,j3 , xi,j4 ∈ V2 ∪ V3. However, this contradicts the fact that G
+
I [V2 ∪ V3]

is a split graph. Thus yj 6∈ V1. By the same argument, yj 6∈ V2. This proves that

V3 ⊇ {y1, . . . , ym}. Furthermore, note that V3 contains no xi,j or xi,j , since each has a

non-neighbour in {y1, . . . , ym} and V3 is a clique. Thus V3 = {y1, . . . , ym} as promised.

That concludes the proof. 2

Theorem 60. The Stable-MS
2 problem is NP-complete.

Proof. Once again we rephrase the problem as: given a graph G, decide if we can

partition its vertex set into 3 independent sets V1, V2, V3, such that the edges between V2
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and V3 form the complement of a perfect matching. As before, we reduce from One-In-

Three-3Sat.

Consider an instance I of the problem, namely the instance consists of m clauses

C1, . . . , Cm containing variables v1, . . . , vn. Again, we may assume it satis�es the prop-

erties listed in Lemma 57. We de�ne Ji to be the set of indices j such that vi appears in

Cj , and de�ne Ji to be the set of indices j such that vi appears in Cj .

For the instance I, consider the graph G+
I constructed in the proof of Theorem 59.

Construct the graph G∗I from G+
I by removing all edges of the form yiyj , i, j ∈ {1, . . . ,m}

(e�ectively replacing the clique on {y1, . . . , ym} by an independent set). All other edges

remain the same.

We claim that G∗I has a Stable-MS
2 partition if and only if I has a satisfying

truth assignment (as an instance of One-In-Three-3Sat).

For the forward direction, we note that, by the proof of Theorem 59, if GI admits

a Stable-MS
4 partition V1, V2, V3, then V3 = {y1, . . . , ym}. Thus, this is also a Stable-

MS
2 partition of G∗I . This proves that if I has a satisfying truth assignment, then G∗I

admits a Stable-MS
2 partition.

Now suppose, conversely, thatG∗I admits a Stable-MS
2 partition. In other words,

V (G∗I) can be partitioned into three independent sets V1, V2, V3, such that the edges

between V2 and V3 form the complement of a perfect matching.

First, observe that if a, b, c ∈ V2∪V3 is an independent set then either all of them

are contained in V2 or all of them are contained in V3. Indeed, suppose, without loss

of generality that, a, b ∈ V2 and c ∈ V3, then c would have two non-neighbours in V2,

contradicting the fact that the edges between V2 and V3 form the complement of a perfect

matching.

Next, we show that yj ∈ V2 for all j ∈ {1, . . . ,m} or yj ∈ V3 for all j ∈ {1, . . . ,m}.
By the above observation and Lemma 57, we need only show that yi 6∈ V1. Suppose, for

contradiction, that yi ∈ V1. By Lemma 57, there must be vertices xi1,j1 , xi2,j2 , xi3,j3 and

xi1,j4 (with i1, i2, i3 pairwise distinct), none of which correspond to literals in the clause Cj

(i.e. j1, j2, j3, j4 6= j). Since they do not correspond to these literals, yj must be adjacent

to all of these vertices, so xi1,j1 , xi2,j2 , xi3,j3 , xi1,j4 ∈ V2 ∪ V3. But xi1,j1 , xi2,j2 , xi3,j3 and

xi2,j2 , xi3,j3 , xi1,j4 are both independent sets of size 3. Thus all four of these vertices

must be members of the same set Vi (i ∈ {2, 3}). But xi2,j2 and xi1,j4 are adjacent,

contradicting the fact that V2 and V3 are independent sets.

Hence, we may conclude, without loss of generality, that {y1, . . . , ym} ⊆ V3. No-

tice that, since each vertex xi,j or xi,j corresponds to a unique occurrence of a literal

in a unique clause in I, every vertex not of the form yj has a neighbour in V3. Thus,
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since V3 is an independent set, V3 = {y1, . . . , ym}. Finally, note that since V1, V2, V3 is

a Stable-MS
2 partition for G∗I and V3 = {y1, . . . , ym}, then by the construction of G∗I ,

V1, V2, V3 must also be a Stable-MS
4 -partition of G+

I . Thus, by the proof of Theorem

59, I must have a satisfying assignment.

This concludes the proof. 2

5.6 Supplement: A superfactorial subclass of chordal bipar-

tite graphs

It is worth noting that in addition to subfactorial and factorial classes, there are also

hereditary classes Π that are superfactorial i.e. for any c > 0, Π has more than ncn

labelled graphs on n vertices if n is su�ciently large. Finding minimal such classes is a

challenging open problem.

It is known that chordal bipartite graphs are superfactorial [Spinrad, 1995]. Chor-

dal bipartite graphs are bipartite graphs with no chordless cycles of length 6 or more,

i.e. they are the (C3, C5, C6, C7, . . .)-free graphs. In this section we show that this class

is not a minimal superfactorial class by �nding a superfactorial class which is a proper

subclass of bipartite chordal graphs. On the other hand, all other proper subclasses of

chordal bipartite graphs that have been studied in the literature, such as forests, bi-

partite permutation graphs, bipartite distance-hereditary graphs and convex graphs, are

factorial.

In order to derive a lower bound on the number of n-vertex chordal bipartite

graphs, Spinrad counted in [Spinrad, 1995] the number of bipartite adjacency matrices

representing these graphs, i.e. binary matrices whose rows correspond to one part of the

graph and columns correspond to the other part. In particular, he used [Spinrad, 1995]

the following construction.

Let M be a 2n by 2n binary matrix. Divide it into four n by n quadrants. Place

an arbitrary perfect matching in the upper left quadrant and a matrix with all values

equal to 1 in the lower right quadrant. Repeat this construction recursively within the

other two quadrants. Let us denote the set of matrices constructed in this way by M∗

and the set of bipartite graphs represented by these matrices by Y∗.
Spinrad [1995] showed hat the number of matrices in M∗, and therefore the num-

ber of n-vertex graphs in Y∗, is Ω(2Ω(n log2 n)). He also showed that every graph in Y∗ is
chordal bipartite, which implies in particular a superfactorial lower bound for the num-

ber of n-vertex chordal bipartite graphs. However, as we show below, not every chordal
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bipartite graph occurs as an induced subgraph of a graph in Y∗.
We let 2C4 denote the graph consisting of two disjoint copies of C4 and let C4−C4

denote the graph obtained from 2C4 by adding exactly one edge connecting vertices from

di�erent C4's (see Figure 5.1).

(a) 2C4 (b) C4 − C4

Figure 5.1: The graphs 2C4 and C4 − C4

Lemma 61. Let G be a graph from Y∗ and let C1 and C2 be two vertex-disjoint induced

C4's in G. Then there are at least two edges between C1 and C2 in G.

Proof. We prove the lemma by induction on the number of vertices in G. Clearly the

lemma is true if G contains at most 7 vertices.

Let A∪B be a bipartition of G. By de�nition, the vertices of G can be partitioned

into two parts A = A1 ∪ A2 and B = B1 ∪ B2 in such a way that A1 ∪ B1 induces a

1-regular graph and A2 ∪B2 induces a complete bipartite graph.

The vertices of an arbitrary induced C4 in G can be arranged within the four

subsets of G in exactly one of the following ways:

(1) one vertex in A1, one in B1, one in A2 and one in B2,

(2) two vertices in A2 and two in B2,

(3) one vertex in A1, two in B2 and one in A2,

(4) one vertex in B1, two in A2 and one in B2,

(5) two vertices in A1 and two in B2,

(6) two vertices in B1 and two in A2.

If both C1 and C2 are located according to case 5 (or case 6), then the lemma

holds by induction. In all other cases it is easy to check the existence of at least two

edges between C1 and C2 with endpoints in A2 ∪B2. 2

Corollary 62. Every graph in Y∗ is (2C4, C4 − C4)-free.

74



Corollary 62 and the lower bound on the number of n-vertex graphs in Y∗ imply

the following conclusion.

Theorem 63. The number of n-vertex (2C4, C4 − C4)-free chordal bipartite graphs is

Ω(2Ω(n log2 n)), i.e. the class of (2C4, C4 −C4)-free chordal bipartite graphs is superfacto-

rial.

5.7 Conclusion

In the present chapter we proved that the Stable-Π problem is polynomial-time solvable

for all subfactorial hereditary properties Π and for seven of the nine minimal factorial

hereditary properties. For Π = M1, the problem is known to be NP-complete. This

leaves one �nal open case, namely where Π is the class of chain graphsM3. Clarifying

the complexity status of this exception is a challenging research problem. In the Sup-

plement, we found a proper subclass of chordal bipartite graphs which is superfactorial,

showing that chordal bipartite graphs are not minimal superfactorial. Finding minimal

superfactorial classes in this family is an interesting direction for future research.
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Chapter 6

E�cient Edge Domination

6.1 Introduction

In this section, we study the problem of determining whether a graph G has an induced

matching that dominates every edge of the graph, i.e. whetherG has an induced matching

M such that every edge of the graph shares at least one vertex with an edge of M . We

will refer to this problem as Efficient Edge Domination. In the notation of Chapter

5, this is the Stable-MS
1 problem. It has also appeared in the literature under the

name Dominating Induced Matching [Brandstädt and Mosca, 2011b; Cardoso and

Lozin, 2009; Korpelainen, 2009]. The Efficient Edge Domination problem is related

to parallel resource allocation problems of parallel processing systems [Livingston and

Stout, 1988], encoding theory and network routing [Grinstead et al., 1993].

From an algorithmic point of view, the Efficient Edge Domination problem,

like the Maximum Induced Matching problem is hard: it is NP-complete for general

graphs [Grinstead et al., 1993]. In [Cardoso et al., 2008], it was shown that if a graph has a

dominating induced matching, then this induced matching is of maximum size. However,

not every maximum induced matching is dominating and there are classes of graphs

(e.g. line graphs) where the problems have di�erent complexities [Cardoso and Lozin,

2009; Kobler and Rotics, 2003]. The problem is also related to several other algorithmic

graph problems, such as 3-Colourability. Indeed, a graph has a dominating induced

matching only if it is 3-colourable.

The problem has also been studied in many restricted graph classes. Kratochvíl

[1994] proved the NP-completeness of this problem in cubic graphs, while Cardoso et al.

[2008] extended this result to d-regular graphs for arbitrary d ≥ 3. The problem was also

shown to be NP-complete for bipartite graphs [Lu and Tang, 1998] and planar bipartite
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graphs [Lu et al., 2002], and this was strengthened to planar bipartite graphs of maximum

degree 3 [Brandstädt et al., 2010]. It is also known to be NP-complete in many other

classes of graphs [Cardoso et al., 2011].

The NP-completeness results for bounded degree and bipartite graphs were also

strengthened in [Cardoso and Lozin, 2009] as follows.

Let Sk denote the class of (C3, . . . , Ck, H1, . . . ,Hk)-free bipartite graphs of vertex

degree at most 3, where Ck is a chordless cycle on k vertices and Hk is the graph

represented in Figure 6.1. Associate with every graph G a parameter κ(G), which is the

maximum k such that G ∈ Sk. If G belongs to no class Sk, we de�ne κ(G) to be 0, and

if G belongs to all classes Sk, then κ(G) is de�ned to be ∞. Finally, for a set of graphs

M , de�ne κ(M) = sup{κ(G) : G ∈M}.

Theorem 64. [Cardoso and Lozin, 2009] Let M be a set of graphs and X the class of

M -free bipartite graphs of vertex degree at most 3. If κ(M) < ∞, then the Efficient

Edge Domination problem is NP-complete in the class X.
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Figure 6.1: Graphs Si,j,k (left) and Hi (right)

Unless P = NP , Theorem 64 provides a necessary condition for polynomial-time

solvability of the problem in classes of graphs de�ned by forbidden induced subgraphs.

In particular, given a setM of forbidden graphs, the problem is polynomial-time solvable

in the class of M -free graphs only if κ(M) =∞. Three basic ways to make this happen

is to include in the set M of forbidden graphs

(1) graphs containing arbitrarily large minimum induced cycles,

(2) graphs containing arbitrarily large minimum induced subgraphs of the form Hk,

(3) a graph G with κ(G) =∞.

Nearly all polynomial-time results available in the literature deal with graph

classes of the �rst type. This includes bipartite permutation graphs [Lu and Tang, 1998],
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convex graphs [Korpelainen, 2009], chordal graphs [Lu et al., 2002] and hole-free graphs

[Brandstädt et al., 2010]. The problem is also known to be solvable in polynomial time

in (Hk, Hk+1, . . .)-free graphs of bounded degree, which is a class of type 2 and in classes

of bounded clique-width [Cardoso et al., 2011] (which can be any of the three types).

Nothing else is known about the complexity of the problem in classes of the second

type and only a few results are available for classes of the third type. For example, the

problem is known to be solvable in polynomial time in claw-free graphs [Cardoso et al.,

2011] and in P7-free graphs [Brandstädt and Mosca, 2011b] (see [Brandstädt and Mosca,

2011a] for full details of the proof). By de�nition, κ(G) = ∞ if and only if G belongs

to all classes Sk, i.e. G belongs to the intersection ∩Sk taken over all possible values

of k. It is not di�cult to see that G ∈ ∩Sk if and only if every connected component

of G is of the form Si,j,k (see Figure 6.1), where i, j, k ≥ 0. The smallest non-trivial

graph of the from Si,j,k (apart from the chordless paths) is S1,1,1, also known as the claw.

It is known that the problem is solvable in polynomial time in this class [Cardoso and

Lozin, 2009]. This class has received much attention in the literature due to the many

attractive properties of claw-free graphs, see for example [Chudnovsky and Seymour,

2008; Favaron, 2003; Le et al., 2008; Minty, 1980]. In particular, Minty [1980] develops a

polynomial-time algorithm for the Maximum Independent Set problem in claw-free

graphs, which extends the celebrated Edmonds solution for the Maximum Matching

problem [Edmonds, 1965]. However, very little is known about the complexity of algo-

rithmic problems in extensions of claw-free graphs. For instance, it is known that the

Maximum Independent Set problem can be solved in polynomial time for S1,1,2-free

graphs [Lozin and Milani£, 2008], but for the class of S1,1,3-free graphs, the complexity

status of the problem was an open question. It has been shown that Efficient Edge

Domination is solvable in polynomial time for S1,2,2-free graphs [Korpelainen, 2012]

(these are also known as E-free graphs, since S1,2,2 can also be drawn as a capital letter

E).

To the best of our knowledge, nothing is known about the parameterized com-

plexity of the Efficient Edge Domination problem.

In the present chapter, we �rst prove that Efficient Edge Domination is

�xed-parameter tractable with respect to two natural parameters, namely the size of

the induced matching (|B′|) and the size of the independent set (|W ′|). We then go on

to show that the problem is polynomial-time solvable in the class of S1,1,3-free graphs.

Generalising this result and using previously known results, we completely characterise

the complexity of the problem in F -free graphs, for graphs F on at most 6 vertices.
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6.2 Preliminaries

We can phrase Efficient Edge Domination as the problem of deciding whether or

not the vertices of a graph G can be partitioned into two sets W ′ and B′, such that W ′

is an independent set in G and G[B′] is an induced matching of G (i.e. every vertex in

G[B′] is of degree exactly 1). We say that the vertices in W ′ are white and the vertices

in B′ are black.

We consider a generalisation of this problem, namely theMinimum Restricted

Efficient Edge Domination problem. This is de�ned as follows:

Minimum Restricted Efficient Edge Domination

Instance: A graph G, a weight function w : E(G) → R and two sets

B,W ⊆ V (G).

Output: Among all dominating induced matchings B′,W ′ satisfying

B ⊆ B′, W ⊆ W ′, output one that minimises
∑

e∈M w(e)

where M = {xy ∈ E(G) : x, y ∈ B′}. If no such partition

exists then output Impossible.

The unrestricted version of this problem i.e. that where B = W = ∅ is known as

the Minimum Efficient Edge Domination problem. The Efficient Edge Domi-

nation problem is the case where B = W = ∅ and the weight function w is identically

zero.

We say that a black vertex is matched if it has exactly 1 black neighbour and

unmatched if it has no black neighbour. We say that a colouring of the vertices of a

graph is valid if no vertex is coloured with two di�erent colours, no two white vertices

are adjacent and no black vertex has more than one black neighbour.

6.3 Simple Reduction Rules

Given an instance (G,B,W ) of the Minimum Efficient Edge Domination problem,

we de�ne the following potential function: ϕ(G,B,W ) = 2|V (G)| − |B| − |W |. Note

that ϕ(G,B,W ) ≥ 0, with equality if and only if |V (G)| = |B| = |W |. The proofs in

this chapter rely on a series of reduction rules. Applying these rules allows us to assume

certain useful properties about the input instance. In this section we introduce some

simple reduction rules that can be applied to general instances of the problem.

We apply the following reduction rules in the order given, i.e. before the applica-

tion of any rule, we assume that all previous rules have been applied exhaustively. We

will show that after any of these reduction rules is applied, the reduced problem will

79



have a valid solution if and only if the original one did. Moreover, the value of optimal

solution of the reduced problem will be the same as that for the original problem, un-

less otherwise stated (see comment after Rule R4). Each of these reduction rules runs

in polynomial time. To see that this yields an algorithm that runs in polynomial time

overall, note that each rule either solves the problem optimally or decreases the value of

ϕ (except Rule R1, which recurses on disjoint sets of vertices).

Note that if the problem instance (G,B,W ) has no valid solution for some com-

ponent of G, then the problem has no valid solution for G. If every component of G has

a valid solution, an optimal solution for G can be obtained by taking the union of the

optimum solutions for the components of G.

Given an instance (G,B,W ) of the problem with ϕ(G,B,W ) > 0:

R1 If G is disconnected, solve the problem componentwise. If the problem has no solution

on any of the components of G, it has no solution on G itself. Note that if D1, . . . , Dk

are the components of G then ϕ(G,B,W ) = ϕ(D1, V (D1) ∩B, V (D1) ∩W ) + · · ·+
ϕ(Dk, V (Dk) ∩B, V (Dk) ∩W ) and the weight of the optimal solution is the sum of

the weights of the optimal solutions on each of its components.

R2 If B ∩W 6= ∅ then output (G,V (G), V (G)). Indeed, if B ∩W 6= ∅ then the problem

has no valid solution, since no vertex can be both black and white. In this case we

can output the instance (G,V (G), V (G)), which clearly has no valid solution and

which ϕ evaluates to 0.

R3 If x ∈W , output (G−x,B∪N(x),W \{x}). Indeed, all neighbours of a white vertex
must be black. Once we force all the neighbours of a white vertex to be coloured

black, we can remove the white vertex without loss of generality.

Note that Rule R3 allows us to assume that from now on, W = ∅ in the input instance.

R4 If x, y ∈ B, xy ∈ E(G), output (G− {x, y}, B \ {x, y},W ∪N({x, y})). Indeed, if xy
is an edge where both x and y are black, then in any valid solution, xy must form

part of the matching, and so any other neighbours of x and y must be white.

Rule R4 allows us to assume that from now on, B is an independent set in the

input instance. Note that this rule reduces the value of the optimal solution in G by

w(xy).

R5 If N(x) = 0, output (G,B,W ∪ {x}). In this case, x cannot be matched with any

black vertex, so it must be white.
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R6 If V |(G)| = 2, output (G,V (G),W ). In this case, G must consist of a single edge, so

both its vertices must be black.

This allows us to assume that G is connected and contains at least 3 vertices.

R7 If x ∈ B,N(x) = 1, output (G,B ∪N(x),W ). In this case, x must be matched with

its unique uncoloured neighbour.

R8 If x, y ∈ B, z ∈ V (G), xz, yz ∈ E(G), Output (G,B,W ∪ {z}). If z has two black

neighbours, it cannot be coloured black.

R9 If G contains a diamond, colour it in the only possible way. If w, x, y, z ∈ V (G),

with wx,wy,wz, xz, yz ∈ E(G) and xy 6∈ E(G), then in any valid solution w and z

must be black and x and y must be white (see also Figure 6.3). We therefore output

(G,B ∪ {w, z},W ∪ {x, y}).

R10 If x1x2, x2x3, x3x4, x4x1 ∈ E(G), x1x3, x2x4 6∈ G, and x1 ∈ B output (G,B ∪
{x3},W ∪ {x2, x4}). The vertices of an induced C4 must alternate in colour (see

also Figure 6.2).

Figure 6.2: A C4 subgraph has two possible colourings

R11 If G contains a K4 output (G,V (G), V (G)) In this case, no valid colouring is possible

(see also Figure 6.3).

R12 If G contains a butter�y, colour it in the only way possible. If x, y1, y2, y3, y4 ∈ V (G)

with xy1, xy2, xy3, xy4, y1y2, y3y4 ∈ E(G) and y1y3, y1y4, y2y3, y2y4 6∈ E(G) then in

any solution, x must be white and y1, y2, y3, y4 must be black (see also 6.3). We

therefore output (G,B ∪ {y1, y2, y3, y4},W ∪ {x}).

R13 If G contains a paw, the leaf vertex and the central vertex must have di�erent colours.

If w, x, y, z ∈ V (G) with wx, xy, xz, yz ∈ E(G), wy,wz 6∈ E(G), then in any solution,

w and x must have di�erent colours (see also 6.4). Therefore if x ∈ B then output

(G,B,W ∪ {w}) and if w ∈ B then output (G,B,W ∪ {x}).

We may now assume that G is (butterfly, diamond,K4)-free. Armed with these

reduction rules, we are now ready to study the parameterized complexity of the problem.
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(a) diamond (b) butter�y (c) K4

Figure 6.3: A diamond or butter�y subgraph has only one possible valid colouring. A
K4 subgraph has no valid colourings

xw

y

z

Figure 6.4: In a paw subgraph, w and x must have di�erent colours.

6.4 E�cient Edge Domination is Fixed-Parameter Tractable

In this section, we parameterize the unweighted version of the problem by the size of

both |B| and |W |. We de�ne the parameterized (k, l)-Restricted Efficient Edge

Domination problem as follows:

(k, `)-Restricted Efficient Edge Domination

Instance: A graph G, and two sets B,W ⊆ V (G).

Parameter: A pair of integers k,l

Output: Output a dominating induced matching B′,W ′ satisfying

B ⊆ B′, W ⊆ W ′, such that |B′| ≤ k OR |W ′| ≤ `. If

no such partition exists then output Impossible.

Note that if a graph G has a dominating induced matching then its size will be

equal to that of a maximum induced matching in G. However, while the k-Induced

Matching problem is W[1]-hard, the related (k, 0)-Efficient Edge Domination is

�xed-parameter tractable.

Theorem 65. The (k, `)-Restricted Efficient Edge Domination problem is �xed-

parameter tractable.

Proof. To prove the theorem, we use the following brute-force algorithm that solves

the problem.

Given an instance (G,B,W ) of the problem (we de�ne the weight function w to

be identically zero), we run the following algorithm:
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1. Apply the reduction rules. Note that when applying Rule R4, k must be reduced

by 2 and when applying Rule R3, ` must be reduced by 1.

2. If |B| > k AND |W | > `, stop this branch of the algorithm.

3. If (B,W ) forms a partition of V (G), output (B,W ) and stop the algorithm.

4. As long as the reduced graph G is not fully coloured, it must contain a component

of size at least 3. We can therefore �nd a P3 or a K3 in the reduced graph. None

of these 3 vertices may be pre-coloured white and at most one of them may be pre-

coloured black. This means that there are at most 3 ways to colour the 3 vertices

in a valid way (one of them must be white, the other two black). Branch according

to these possibilities and run the algorithm recursively.

If the algorithm fails to �nd a suitable partition, we output Impossible.

Since we add at least one black and at least one white vertex at each branching

point, the complexity of the algorithm is bounded by p(n)3max{k,`}, where p(n) is a

polynomial in the number of vertices of the graph, independent of k and `. 2

6.5 Main Result

In this section, we prove the following theorem.

Theorem 66. The Minimum Restricted Efficient Edge Domination problem

can be solved in polynomial time in the class of S1,1,3-free graphs (see Figure 6.5).

Figure 6.5: The graph S1,1,3

As a starting point, we have the following theorem.

Theorem 67. [Brandstädt et al., 2010] The Minimum Efficient Edge Domination

problem can be solved in polynomial time in the class of (C5, C6, . . .)-free graphs.

An easy consequence of this is the following:
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Corollary 68. The Minimum Restricted Efficient Edge Domination problem

can be solved in polynomial time in the class of (C5, C6, . . .)-free graphs.

Proof. Let (G,B,W ) be an instance of the Minimum Restricted Efficient Edge

Domination problem such that G is (C5, C6, . . .)-free. For every vertex x ∈ B, create
a butter�y and attach (with an edge) x to the central vertex of the butter�y. Likewise,

for every vertex x ∈ W , create a butter�y and attach one of the non-central vertices

of the butter�y to x. Set the weight of all of the resulting new edges to zero. The

resulting graph G′, together with it's resulting weight function gives an instance of the

Minimum Efficient Edge Domination problem. In any solution to this problem,

since the butter�y graph can only be coloured in one valid way (see Figure 6.3), every

vertex x ∈ B must be coloured black and every vertex x ∈ W must be coloured white.

Note that G′ admits a solution to the Efficient Edge Domination problem if and

only if G does and, furthermore, the minimal such solution in G′ has the same weight as

the corresponding solution in G. 2

We say that an instance (G,B,W ) is basic if it is (C5, C6, . . .)-free.

From now on, we may assume that the instance we are working with is non-basic

and that any point of the proof, all of the reduction rules appearing earlier in the chapter

have been applied exhaustively. We will construct some more reduction rules whose

application will reduce the problem to a basic instance.

Recall that a set S of vertices dominates the graph G if every vertex in G is either

in S or adjacent to a vertex in S. Whenever we apply one of the reduction rules de�ned

earlier, if we remove a vertex from the graph, we colour all of it's neighbours. Thus if at

any stage we �nd that W ∪B dominates the graph G, then after applying the reduction

rules exhaustively, this will still be the case. This leads us to the following useful result.

Lemma 69. If G is an S1,1,3-free graph and W ∪B dominates G, then the problem can

be solved in polynomial time.

Proof. Suppose G is such a graph and W ∪B dominates G. Without loss of generality,

we may assume that the reduction rules above have been applied exhaustively. In this case

Gmust be connected,W = ∅ and B is an independent set of vertices which dominates the

graph. Note that every vertex not in B must have exactly one neighbour in B (by Rule

R8 and the fact that B dominates the graph). Also, by Rules R5 and R7, every vertex

in B must have at least two neighbours (which are not in B, since B is an independent

set).
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Consider a vertex x ∈ B. No vertex in B can be adjacent to x. Since G is

(butterfly, diamond,K4)-free, the neighbourhood N(x) induces a graph G[N(x)] con-

taining at most one edge. Suppose that G[N(x)] contains an edge. Then by Rule R13,

N(x) contains at most two vertices.

Now suppose that x ∈ B, |N(x)| ≥ 3. Then V (G) = N(x) ∪ {x}. Indeed,

suppose that this is not the case. Then G[N(x)] must be edge-less. Let y1, y2, y3 be

distinct neighbours of x. Some vertex z 6∈ N(x) must be adjacent to a vertex in the

neighbourhood of x. Without loss of generality, assume that z is adjacent to y1. By

Rule R8, z 6∈ B. Let z′ ∈ B be the black neighbour of z. Again, by Rule R8, z′ is

not a neighbour of y1, y2, y3. By Rule R10, z is not a neighbour of y2 or y3. But now

G[x, y2, y3, y1, z, z
′] is an S1,1,3. This contradiction proves that if |N(x)| ≥ 3 then G is a

star, whose central vertex is black. In this case the problem is easy to solve optimally.

We may now assume that every vertex in B has exactly two neighbours. In any

valid colouring, exactly one of these two neighbours must be black and one must be

white. If x, y 6∈ B are adjacent then they cannot both be white and they cannot both

be black. The e�ect of this is that if we specify the colour of any vertex 6∈ B, we can

immediately deduce the only possible valid colour of every other vertex in G. Thus in

this case we pick an arbitrary uncoloured vertex and choose the optimum of the two

resulting colourings. 2

Since our instance is non-basic, it must contain an induced cycle C of length at

least �ve. Let v1, . . . , vk be the vertices of C, in order. We say that a vertex x ∈ V (G)

which is not in the cycle is of type d (with respect to C) if it has d neighbours on C.

We analyse this situation via a series of claims, that must be satis�ed for every

vertex x ∈ V (G) \ V (C).

C1 Vertex x can have at most one pair of consecutive neighbours on the cycle C. This

follows immediately from the fact that G is (diamond, butterfly,K4)-free.

C2 If k ≥ 6 then there are no vertices of type 1. Indeed, suppose x is of type 1, and

is adjacent to v2 (by symmetry). Then G[v2, x, v1, v3, v4, v5] is an S1,1,3, which is a

contradiction.

C3 If k ≥ 7 and x is a vertex of type 2, then x must be adjacent to consecutive vertices

of C. Suppose k ≥ 7 and x is a vertex of type 2, but x is adjacent to non-consecutive

vertices of C. By symmetry, we assume x is adjacent to v1 and vi, where 3 ≤ i ≤ k
2 +1.

If i = 3, then G[v3, v2, x, v4, v5, v6] is an S1,1,3. If i = 4 then G[v1, v2, vk, x, v4, v5] is
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an S1,1,3. If i ≥ 5 then G[v1, x, vk, v2, v3, v4] is an S1,1,3. This contradiction proves

the claim.

C4 If k ≥ 7, x is of type ≥ 3 then x has a pair of consecutive neighbours on C. Sup-

pose x is not adjacent to any pair of consecutive vertices on C. Let v1, vi, vj be

distinct neighbours of C with i < j. If i > 3 then G[v1, v2, vk, x, vi, vi+1] is an S1,1,3.

Thus i = 3. Repeating this argument, x must also be adjacent to v5. But then

G[v1, v2, vk, x, v5, v4] is an S1,1,3, which is a contradiction.

C5 If k ≥ 8, then no vertex is type ≥ 3 with respect to C. Suppose that k ≥ 8 and x is a

vertex of type ≥ 3. By Claim C4, x must have a pair consecutive neighbours in the

cycle. By symmetry, we may assume x is adjacent to v1, v2, vi, where 6 ≤ i ≤ k − 1.

But then G[vi, vi−1, vi+1, x, v2, v3] is an induced S1,1,3, which is a contradiction.

C6 If k = 7 and x is of type ≥ 3 then x is of type 3, x must have two consecutive

neighbours on C and in any dominating induced matching, x's third neighbour must be

coloured white. Suppose x is of type≥ 4. By symmetry and Claim C1, we may assume

that x is adjacent to v1, v2, v4, v6, but not v3, v5, v7. But then G[v4, v3, v5, x, v1, v7]

is an S1,1,3. Thus x must have type 3. By Claim C4, x must have two consecutive

neighbours on the cycle. By the same argument as for Claim C5, if x is adjacent to

v1, v2, vi, then i = 5. Suppose v5 were coloured black. Because G[x, v1, v2, v5] is a

paw, x would have to be white. Then v1 and v2 would be black, so v3 and v7 would

be white, so v4 and v6 would be black. This is a contradiction since then v5 would

be black and therefore could not have 2 black neighbours. Thus v5 must be white.

We thus get the following reduction rule:

R14 If G contains a cycle of length seven, with a neighbour of type 3, output (G,B,W ∪
{y}), where y is x's non-consecutive neighbour on the cycle.

6.5.1 Graphs containing a cycle of length ≥ 7

We now consider the case where G contains a cycle C of length k ≥ 7. Throughout this

section, we interpret the subscripts of the vertices vi modulo k.

Because of Rules R3 and R14 and Claims C2 and C3, from now on, we may

assume that if x ∈ V (G) \ V (C) has a neighbour on C then x has exactly two neigh-

bours on C and these neighbours must be consecutive vertices of C. Note that by

(butterfly, diamond,K4)-freeness, it follows that any two vertices outside C cannot have
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a common neighbour on C. This means that the vertices with neighbours in C can be

uniquely determined by which vertices in C they have as neighbours.

Now suppose that x and y (not necessarily distinct) have neighbours on C and

that x and y are �consecutive neighbours� of C, i.e. that for some i, j, where i < j, x

is adjacent to vi and vi+1, y is adjacent to vj and vj+1, but the vertices vi+2, . . . , vj−1

have no neighbours outside C (interpreting subscripts modulo k if necessary). Note that

G[vi, vi+1, x, vi+2] is a paw, so in any dominating induced matching, vi+1 and vi+2 must

be di�erent colours (similarly for vj−1 and vj). Since G is (butterfly, diamond,K4)-free,

j ≥ i+ 2. We now make the following useful observation.

Observation 1. Suppose that x1x2x3x4 is an induced path of length three in G, such that

x2 and x3 have no neighbours in G outside this path. Then in any dominating induced

matching, x1 and x4 must have the same colour.

First, let us suppose that j−i ≡ 0 mod 3. If vi+2 is black, then in any dominating

induced matching, vi+1 must be white and vi+3 must be black. Applying Observation 1

repeatedly, we �nd that vj−1 and vj must also be black, which is a contradiction. Thus

vi+2 must be white.

Next, suppose j− i ≡ 1 mod 3. If vi+1 is black, then vi+2 be white, so vi+3 must

be black. Again, applying Observation 1 repeatedly, we �nd that both vj−1 and vj must

also then be black, which is a contradiction. Thus vi+1 must be white.

We thus have the following rule:

R15 If there is such a cycle C and if such vertices x, y exist, where j − i 6= 2 mod 3,

output (G,B,W ∪ {vi+2}) if j − i ≡ 0 mod 3 and output (G,B,W ∪ {vi+1}) if

j − i ≡ 1 mod 3.

Now suppose that j − i ≡ 2 mod 3 for all such consecutive pairs x, y. Let

x1, . . . , xt be the neighbours of C, in order and de�ne xt+1 := x1. Let vii and vii+1 be

the neighbours of xi (ii's chosen such that ii < ii+1 <= ii + k).

For any two �consecutive neighbours� xi, xi+1 of the cycle C, xi is adjacent to

vii and vii+1 and xi+1 is adjacent to vii+1 and vii+1+1, while vii+2, . . . , vii+1−1 have no

neighbours outside the cycle C. We are thus reduced to the case where the size of the

set {vii+2, . . . , vii+1−1} is a multiple of 3 for every such pair of �consecutive neighbours�

xi and xi+1.

Note that for any i, G[xi, vii , vii+1] is a triangle, so at least one of vii , vii+1 must

be black. Suppose vii+1 is black. Then vii+2 must be white. If ii+1 = ii + 2, then vii+1+1

must be black. Otherwise, vii+3 and vii+4 must be black. Again, using Observation 1
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repeatedly, we �nd that vii+1 must be white and thus vii+1+1 must be black. Continuing

this argument, we �nd that vij is white and vij+1 is black for all j. Similarly, if vii+1 is

white, then vii must be black, so by a symmetric argument we �nd that in this case vij
is black and vij+1 is white for all values of j.

We may thus conclude that N(C) is black and there are at most two possible

ways of colouring the cycle.

R16 If C has neighbours, and it is possible to colour C, colour it in the best way possible

(of the at most two choices) and add N(C) to B. If no such colouring is possible,

output (G,V (G), V (G)).

If C has no neighbours outside C, then by Observation 1, the colours along the

cycle must be a repeating sequence of white, black, black. Thus there are at most 3

possible colouring of C. We thus get the following reduction rule:

R17 If C has a valid colouring, output an optimal one (of the at most three choices). If

C has no valid colouring output (G,V (G), V (G)).

From now on, we may assume G has no induced cycles of length ≥ 7.

6.5.2 Graphs containing a cycle of length 6

We assume that all induced cycles in G are of length at most 6. Suppose C is an induced

cycle on 6 vertices v1, . . . , v6.

If x is a neighbour of the cycle, we know it cannot be of type 1 (by Claim C2). By

Claim C1, it cannot be of type ≥ 4. If x is of type 3 and has two consecutive neighbours

in the cycle, then it's third neighbour must be one of the two vertices not adjacent to

the �rst two. We say that such type 3 vertices are of type 3a. If x does not have 2

consecutive neighbours in the cycle, then it must be adjacent to v1, v3, v5 or v2, v4, v6.

We say that such vertices are of type 3b. If x is of type 2, and is adjacent to two vertices

of the cycle which are of distance 2 from each other in the cycle, say x were adjacent to

v1 and v3, then G[v1, x, v2, v6, v5, v4], would be a S1,1,3, which would be a contradiction.

Thus if x is of type 2, it is adjacent to either two opposite or two consecutive vertices of

the cycle. We say such a vertex x is of type 2a and 2b respectively (see also Figure 6.6).

Suppose there is a vertex x of type 3a. Without loss of generality, x is adjacent

to v1, v2 and v4. If x is black then, because G[x, v1, v2, v4] is a paw, v4 must be white, so

v3 and v5 must be black, so v2 must be white, so v1 must be black, so v6 must be white.

If x is white, then v1, v2 must be black, so v6 must be white. In both cases v6 is white,

thus in any valid partition v6 must be white.
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(a) Type 2a (b) Type 2b (c) Type 3a (d) Type 3b

Figure 6.6: The possible neighbours of a C6 in an S1,1,3-free graph

R18 If C = v1 − v2 − v3 − v4 − v5 − v6 − v1 is a cycle of length 6, and x is adjacent to 3

vertices on C, two of which are adjacent, say v1, v2, v4, output (G,B,W ∪ {v6}).

We may now assume there are no vertices of type 3a.

Suppose, for contradiction, that there is a vertex x of type 3b and a vertex y of

type 2b. Without loss of generality, we may assume x is adjacent to v1, v3, v5 and y is

adjacent to v1 and v2. But then x must be adjacent to y otherwise G[v1, v6, y, x, v3, v4]

would be an S1,1,3. But then G[v1, y, v2, x] would be a diamond. This contradiction

implies that if there is a vertex of type 3b, the only neighbours to the cycle not of type

3b must be of type 2a.

Suppose there is a vertex x of type 3b, adjacent to v1, v3 and v5, say. Then

G[v1, v2, v3, x], G[v3, v4, v5, x] and G[v5, v6, v1, x] are C4's, so the only valid colourings are

v1, v3, v5 white, v2, v4, v6, x black or vice-versa. This means that any type 2a neighbours

must be black and there can be no two such neighbours with the same neighbourhood

in the cycle. In fact, because all the black vertices in the cycle need to have a black

neighbour, there must be exactly one of each of the three sorts of type 2a neighbours

and they must be pairwise nonadjacent.

R19 Suppose C = v1 − v2 − v3 − v4 − v5 − v6 − v1 is a cycle in G of length 6, and x is

adjacent to 3 vertices on C, none of which are adjacent, say v1, v3, v5. Check that

there are exactly three vertices y1, y2, y3 such that yi's neighbours on the cycle are

xi and xi+3, otherwise output (G,V (G), V (G)).

Any type 2a vertices must be black and must be matched to a vertex on the cycle.

Thus any other neighbour (i.e. a neighbour of type 3b or of type 0) of a type 2a vertex

must be white.

R20 Suppose C is a cycle in G of length 6, if there is a type 3b or type 0 vertex x adjacent

to a type 2a vertex y, output (G,B,W ∪ {x}).
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Suppose there are type 0 vertices z, z′ such that x and z′ are adjacent to z. Then

x must be adjacent to z′ otherwise G[v1, v2, v6, x, z, z
′] would be an S1,1,3. Thus every

type 0 vertex must be adjacent to a vertex of type 3b. In other words, the graph is

dominated by the cycle, the type 3b vertices and all three type 2a vertices. However,

there are at most 2 ways of colouring this set of vertices (depending on the colour of

vertex v1). Thus in this case, the problem can be solved in polynomial time by the use

of Lemma 69.

R21 Suppose C is a cycle in G of length 6, if there is a type 3b vertex x. Try both possible

colourings for C and apply Lemma 69. If a solution exists, output the optimal one,

otherwise output (G,V (G), V (G)).

So we have now reduced to the case where there are no vertices of type 3. Suppose

there is a type 2a vertex y and a type 2b vertex x with a common neighbour in the cycle.

Without loss of generality, we may assume x is adjacent to v1 and v2 and y is adjacent

to v1 and v4. The vertices x and y cannot be adjacent, otherwise G[v1, x, v2, y] would be

a diamond. But then G[v1, v6, x, y, v4, v3], would be an S1,1,3. Thus no type 2a vertex

can have a common neighbour in the cycle with a type 2b vertex.

No two type 2b vertices may have a common neighbour in the cycle (since G is

(diamond, butterfly,K4)-free). If there are 3 type 2b vertices, without loss of generality

a1 adjacent to v1 and v2, a2 adjacent to v3 and v4 and a3 adjacent to v5 and v6, then

there can be no type 2a vertices. Also, if a1 is white, then v1 and v2 must be black,

so v3 and v6 must be white, so a2, a3, v4, v5 must all be black, which is a contradiction.

Thus in this case all the ai must be black and the cycle must be coloured in alternating

colours.

R22 Suppose C is a cycle in G of length 6, if there are 3 vertices a1, a2, a3 of type 2b adja-

cent to v1&v2, v3&v4 and v5&v6 respectively, check if (G,B∪{a1, a2, a3, v1, v3, v5},W∪
{v2, v4, v6}) or (G,B∪{a1, a2, a3, v2, v4, v6},W ∪{v1, v3, v5}) violates Rule R2. If nei-
ther of them does, pick the one that had the better weight. If one of them violates

the rule, output the other. If both violate the rule, output (G,V (G), V (G)).

If there are 2 type 2b vertices which are not opposite, without loss of generality

a1 adjacent to v1 and v2, a2 adjacent to v3 and v4, then because G[v2, a1, v1, v3] is a paw,

v2 and v3 must have di�erent colours. Again, in this case we cannot have any type 2a

vertices. Suppose without loss of generality, that v2 is white. Then a1, v1 and v3 must be

black, so v6 is white, so v4 and v5 are black, which is a contradiction, since G[a2, v3, v4, v5]

is a paw. Thus in this case there is no valid colouring.
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R23 If C is a cycle in G of length 6 and has two type 2b vertices that are not opposite,

output (G,V (G), V (G)).

Now suppose there are 2 type 2b vertices which are opposite, without loss of

generality a1 adjacent to v1 and v2, a2 adjacent to v4 and v5. Note that in this case we

may (or may not) have some type 2a vertices adjacent to v3 and v6. If v3 is black then

since G[v2, a1, v1, v3] is a paw, v2 must be white. Similarly if v6 is black then v1 must be

white. v1 and v2 cannot both be white, so at least one of v3 and v6 must be white.

If there are no vertices of type 2a, there is only one way to colour the cycle.

R24 If C is a cycle in G of length 6 and has two type 2b vertices a1, a2 that are opposite

and are adjacent to v1&v2 and v4&v5 respectively, but C has no type 2a neighbours,

output (G,B ∪ {v1, v2, v3, v4},W ∪ {v3, v6, a1, a2}).

If there is a vertex x of type 2a, it is adjacent to v3 and v6, at least one of

which must be white, so x must be coloured black. If x is adjacent to a1, this uniquely

determines the colouring of C.

R25 If C is a cycle in G of length 6 and has two type 2b vertices a1, a2 that are opposite

and are adjacent to v1&v2 and v4&v5 respectively and x is a type 2a vertex adjacent

to a1, then output (G,B ∪ {v1, v2, v3, v4},W ∪ {v3, v6, a1, a2}).

If there are two opposite type 2b vertices, there must be a type 2a vertex and no

vertex of type 2a may be adjacent to to a vertex of type 2b. We now show that the cycle,

together with the type 2 vertices dominates the graph. (Note that there are at most 3

ways to colour this set of vertices, depending on the colours of v3 and v6.) Let x be a

type 2a vertex, a1 be a type 2b vertex adjacent to v1 and v2 and suppose a1 has a type

0 neighbour y. Then y must be adjacent to x otherwise G[v6, x, v5, v1, a1, y] would be

an S1,1,3. Now suppose that z is a type 0 vertex adjacent to x and z′ is a type 0 vertex

adjacent to z, but not x. Then G[v6, v1, v5, x, z, z
′] would be an S1,1,3. This contradiction

shows that the cycle, together with the type 2 vertices dominates the graph.

R26 If C is a cycle in G of length 6 and has two type 2b vertices a1, a2 that are opposite

and are adjacent to v1&v2 and v4&v5, the cycle and the type 2 vertices dominate the

graph G. Try all 3 of the possible colourings for the cycle and vertices of type 2 and

apply Lemma 69.

Now suppose there is exactly 1 type 2b vertex, without loss of generality a1

adjacent to v1 and v2. Note that in this case we can again have type 2a vertices, but as
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before, only if they are adjacent to v3 and v6. If v1 is white, then a1, v2 and v6 must all

be black, so v3 must be white, so v4 must be black, so v5 must be black (since v4 has no

neighbours outside the cycle). This is a contradiction, since v5 cannot be black if it has

2 black neighbours. Thus our original assumption must have been wrong and v1 must be

coloured black. Similarly, v2 must be black. This yields a unique colouring of the cycle.

R27 If C is a cycle in G of length 6 and has exactly one type 2b vertex a1, adjacent to

v1&v2, say, output (G,B ∪ {v1, v2, v4, v5},W ∪ {a1, v3, v6}).

So we are now left with the case where there are only type 2a vertices. We claim

that the cycle together with the type 2a vertices dominates the rest of the graph. Indeed,

suppose not. Then there must be a type 2a vertex x and type 0 vertices z, z′ such that

x, z, z′ form a path of length 3. Without loss of generality, assume that x is adjacent

to v1 and v4. Then G[v1, v2, v6, x, z, z
′] is an S1,1,3, which is a contradiction. Thus the

cycle, together with the vertices of type 2a does indeed dominate the whole graph. Now

we need to look at how many ways we can colour this set. The cycle can be coloured in

5 ways: alternately black/white (2 ways) or black, black, white, black, black, white (3

ways). Each of these gives at most one valid way of colouring all the type 2a vertices.

R28 If C is a cycle in G of length 6 and all neighbours of the cycle are of type 2a, then

the cycle together with the type 2a vertices dominates the graph. Try all 5 of the

possible colourings for the cycle and vertices of type 2a and apply Lemma 69.

After applying the above reduction rules, we end up with a graph which contains

no induced cycles of length ≥ 6.

6.5.3 Graphs containing a cycle of length 5

We now consider the case where the graph contains a cycle C of length 5.

(a) Type 1 (b) Type 2a (c) Type 2b (d) Type 3

Figure 6.7: The possible neighbours of a C5 in an S1,1,3-free graph
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In this case we can have vertices of type 1,2 or 3. Suppose x is a type 3 vertex.

Without loss of generality, we may assume it is adjacent to v1, v2 and v4. Suppose x is

black. Then, since G[x, v1, v2, v4] is a paw, v4 must be white. So v3 must be black. Then,

since G[v2, v1, x, v3] is a paw, v2 must be white. Similarly, v1 must be white, which is a

contradiction, since no two white vertices can be adjacent. Thus x must be white.

R29 If C is a cycle in G of length 5, with a type 3 neighbour x, output (G,B,W ∪ {x}).

We may assume there are no vertices of type 3.

Let us say that vertices of type 2 are of type 2a if they have consecutive neigh-

bours on the cycle and of type 2b otherwise. Suppose there are 2 vertices a1, a2 of type

2a. Again, since G is (diamond, butterfly,K4)-free, a1 and a2 cannot have a common

neighbour on the cycle. Without loss of generality, let a1 have neighbours v1 and v2 and

a2 have neighbours v3 and v4. Suppose v5 were black. G[v1, a1, v2, v5] is a paw, so v1

would be white, so a1 and v2 would be black. Similarly, a2 and v3 would be black, which

cannot happen, since v2 cannot have two black neighbours if it is black. Therefore v5

must be white, destroying the cycle.

R30 If C is a cycle in G of length 5, with two type 2a neighbours x, let y be the vertex

of C not adjacent to a type 2a vertex and output (G,B,W ∪ {y}).

Suppose that the cycle has no vertex of type 2a. We claim that the cycle, together

with the type 2b and type 1 vertices dominates the graph. Indeed, suppose not, then there

would be type 0 vertices x, x′ and a type 2a or type 1 vertex z such that G[z, x, x′] is a P3.

Without loss of generality, let v1 be a neighbour of z on the cycle, thenG[v1, v2, v5, z, x, x
′]

is an S1,1,3, which is a contradiction.

There are at most 5 valid colourings of the cycle (black, black, white, black, white

in order and cyclic rotations of this). Each vertex vi can have at most one neighbour of

type 1 (otherwise an S1,1,3 would be present). Thus for any of these �ve colourings of

the cycle, there is at most one valid colour for each of the neighbours of the cycle. This

leads to the following rule.

R31 If C is a cycle in G of length 5 and it's neighbours dominates the graph, try all 5 of

the possible colourings for the cycle. For each such colouring, �nd the unique valid

colouring of its neighbours (if such a colouring exists) and then apply Lemma 69.

Note that the above rule also applies in the case where one of the neighbours of

the cycle is of type 2a, say x. Note that there is at most one possible valid colouring for
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x for any given colouring of the cycle. We have thus reduced to the case where the cycle,

together with it's neighbours does not dominate the graph. By the above arguments,

this means there must be type 0 vertices z, z′ such that G[x, z, z′] is a P3. Without loss

of generality, assume that x is adjacent to v1 and v2.

Suppose, for contradiction that x can be coloured white. Then v1 and v2 must

be black, so v3 and v5 must be white, so v4 must be black and must therefore have a

black neighbour y. v4 can only have neighbours of type 1 or 2b. If y was of type 2b,

without loss of generality adjacent to v2, then G[v2, v3, v4, y], would form a C4, so y

would have to be white, which would be a contradiction. Thus y must be of type 1. Note

that then x and y must be adjacent, otherwise G[v4, y, v5, v3, v2, x] would be an S1,1,3.

Since x is white, z must be black. This means that z cannot be adjacent to y (since y

is black and matched to v4). The result of this is that G[v4, v3, v5, y, x, z] is an S1,1,3.

This contradiction means that x must be coloured black in any valid colouring. It must

be matched with either v1 or v2. Thus all of the other neighbours of x must be white,

yielding the following rule.

R32 If C is a cycle in G of length 5, and let x be it's neighbour of type 2a. Output

(G,B,W ∪ (N(x) \ C).

After applying this rule and the Rule R3, we �nd that Rule R31 can be applied

to the component containing the cycle, since the type 2a vertex has no more neighbours

outside the cycle and so the cycle, together with its neighbours dominates its component

of the graph.

We can thus reduce to the case where the graph has no induced cycles of length

≥ 5, in which case the problem can be solved in polynomial time.

Since all of the above reduction rules can be done in polynomial time, we conclude

that the problem can be solved in polynomial time in the class of S1,1,3-free graphs.

6.6 Conclusion

Using Theorem 66 we obtain the following corollary:

Corollary 70. Let t be a non-negative integer, then the Minimum Restricted Ef-

ficient Edge Domination problem can be solved in polynomial time in the class of

(S1,1,3 + tK2)-free graphs.

Proof. Given an instance (G,B,W ) of the problem, we can �nd all dominating induced

matchings consisting of less than t edges in polynomial time. If G has any induced
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matchings on at least t edges, we branch over all possible choices of induced matchings

M on 2t vertices and try to solve the problem optimally on (G,B ∪M,W ). There are at

most n2t such induced matchings. Note that after the reduction rules R1-R4 have been

applied, we will have removed the induced matching M and any vertices adjacent to a

vertex in M . Since M forms the graph tK2, the resulting graph must be S1,1,3-free and

we solve the instance using our usual algorithm.

If any of the branches of the algorithm give a valid solution we output the optimal

one. If not, then there is no valid solution and we output Impossible. 2

This allows us to draw the following conclusion:

Corollary 71. Let F be a graph on at most 6 vertices. Then the Efficient Edge

Domination problem can be solved in polynomial time in the class of F -free graphs if

and only if every component of F is a graph of the form Si,j,k, where i, j, k ≥ 0. If F

contains at most 6 vertices and is not of this form, the decision version of Efficient

Edge Domination is NP-complete in the class of F -free graphs.

Proof. If F has a component not of the form Si,j,k, the result follows from Theorem 64.

We need only prove the cases where F has exactly 6 vertices. The case where F = S1,2,2

is solved in [Korpelainen, 2012]. Since the problem can be solved in polynomial time for

P7-free graphs [Brandstädt and Mosca, 2011b], it can also be solved for P6-free, P5 +K1-

free, P4 + P2-free and 2P3-free graphs. For all the remaining cases, F is an induced

subgraph of S1,13 + 6K2 (see Table 6.1), so the result follows from Corollary 71. 2

In this chapter, we showed that Efficient Edge Domination is solvable in

polynomial time for S1,1,3-free graphs and completed the complexity characterisation

of the problem for all classes de�ned by a single forbidden induced subgraph on at

most 6 vertices. We also showed that the problem is �xed parameter tractable when

parameterized by the size of the induced matching or by the number of vertices not in

the matching.

Of results of type 3, a natural question for further study is the complexity of the

problem in S1,2,3-free graphs. Note that this class includes both S1,1,3-free graphs and

S1,2,2-free graphs. S1,2,3-free graphs have been previously studied in the literature, for

example in [Lozin, 2002a], it was shown that S1,2,3-free bipartite graphs have bounded

clique width. Since Efficient Edge Domination can be solved in linear time for

P7-free graphs, it is also natural to ask about P8-free graphs.

Another challenging problem is to solve Efficient Edge Domination on
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Graph Graph Name Reference

Empty Corollary 71

P2 + 4K1 Corollary 71

P3 + 3K1 Corollary 71

2P2 + 2K1 Corollary 71

P3 + P2 +K1 Corollary 71

K1,3 + 2K1 Corollary 71

P4 + 2K1 Corollary 71

3P2 Corollary 71

S1,1,2 +K1 Corollary 71

P5 +K1
[Brandstädt and Mosca, 2011b] (P7-free graphs)

and Corollary 71

K1,3 + P2 Corollary 71

P4 + P2
[Brandstädt and Mosca, 2011b] (P7-free graphs)

and Corollary 71

2P3 [Brandstädt and Mosca, 2011b] (P7-free graphs)

S1,2,2 [Korpelainen, 2012]

S1,1,3 Corollary 71

P6 [Brandstädt and Mosca, 2011b] (P7-free graphs)

Table 6.1: The graphs F on 6 vertices, such that Efficient Edge Domination is
solvable in polynomial time for F -free graphs.
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(Ck, Ck+1, Ck+2, . . .)-free graphs for k > 5, extending the recent result for k = 5 [Brand-

städt et al., 2010].
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Part III

Colouring Problems
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Chapter 7

Colouring subclasses of triangle-free

graphs

7.1 Introduction

A vertex colouring is an assignment of colours to the vertices of a graph G in such a

way that no edge connects two vertices of the same colour. The Vertex Colouring

problem consists of �nding a vertex colouring with the minimum possible number of

colours. This number is called the chromatic number of G and is denoted by χ(G). If

G admits a vertex colouring with at most k colours, we say that G is k-colourable. The

k-Colourability problem consists of deciding whether a graph is k-colourable.

Note that in the Vertex Colouring, rather than trying to �nd a single in-

dependent set of maximum size, we try to partition the vertex set of the graph into

the minimum possible number of independent sets. However, in some classes, �nding a

maximum independent set is used as a step in �nding a vertex colouring of the graph.

From a computational point of view, k-Colourability (k ≥ 3) and the de-

cision version of Vertex Colouring are hard problems, i.e. both of them are NP-

complete. Moreover, the problems remain NP-complete in many restricted graph fami-

lies. For instance, 3-Colourability is NP-complete for planar graphs [Dailey, 1980],

4-Colourability is NP-complete for graphs containing no induced path on 8 vertices

[Broersma et al., 2010], the decision version of Vertex Colouring is NP-complete for

line graphs [Holyer, 1981]. On the other hand, for graphs in some special classes, the

problems can be solved in polynomial time. For instance, 3-Colourability is solv-

able for graphs containing no induced path on 6 vertices [Randerath and Schiermeyer,

2004], k-Colourability (for any value of k) is solvable for graphs containing no induced
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path on 5 vertices [Hoàng et al., 2010], and Vertex Colouring (and therefore also k-

Colourability for any value of k) is solvable for perfect graphs [Grötschel et al., 1984].

It has also been show that in the subclass of triangle-free graphs where all subdivisions

of K2,3 are also excluded as induced subgraphs, the chromatic number is bounded by

3 and a vertex colouring can be found in polynomial time [Radovanovi¢ and Vu²kovi¢,

2012].

Recently, much attention has been paid to the complexity of the problems in graph

classes de�ned by forbidden induced subgraphs. Many results of this type were mentioned

above, some others can be found in [Brandt, 2002b; Broersma et al., 2009, 2012; Kami«ski

and Lozin, 2007a,b; Kochol et al., 2003; Král' et al., 2001; Le et al., 2007; Ma�ray and

Preissmann, 1996; Randerath et al., 2002; Woeginger and Sgall, 2001]. In [Král' et al.,

2001], the authors systematically study Vertex Colouring on graph classes de�ned

by a single forbidden induced subgraph, and give a complete characterisation of those

for which the problem is polynomial-time solvable and those for which it is NP-complete.

In particular, the problem is NP-complete for triangle-free graphs. More generally, from

the results in [Kami«ski and Lozin, 2007a] it follows that the problem is NP-complete

in any subclass of triangle-free graphs de�ned by a �nite collection of forbidden induced

subgraphs, each of which contains a cycle. This motivates us to study the problem

in subclasses of triangle-free graphs obtained by forbidding graphs without cycles, i.e.

forests. In this chapter we prove polynomial-time solvability of the problem in many

classes of this type. In particular, our results, combined with some previously known

facts, provide a complete description of the complexity status of the problem in subclasses

of triangle-free graphs obtained by forbidding a forest with at most 6 vertices.

7.2 Preliminaries

Many graph classes that are important from a practical or theoretical point of view can

be described in terms of forbidden induced subgraphs. For instance, by de�nition, forests

form the class of graphs without cycles, and due to König's Theorem, bipartite graphs are

graphs without odd cycles. Bipartite graphs are precisely the 2-colourable graphs, and

recognising 2-colourable graphs is a polynomially solvable task. However, the recognition

of k-colourable graphs is an NP-complete problem for any k ≥ 3.

In the present chapter, we study the computational complexity of the Vertex

Colouring problem in subclasses of triangle-free graphs. The family of these classes

contains both NP-hard and polynomially solvable cases of the problem. For classes

de�ned by a single additional forbidden induced subgraph, a summary of known results
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is presented in the following theorem (see also Table 7.1), where we also prove one more

result that can easily be derived from known results.

Graph Graph Name Complexity Reference

Cross P [Randerath and Schiermeyer, 2002]

S1,2,2 P [Randerath, 2004]

H P
[Randerath, 2004]

(see also Theorem 92 for a shorter proof)

K1,5 NPC [Ma�ray and Preissmann, 1996]

P4 + P2 P
[Broersma et al., 2010]

(see also Theorem 89 for a more general result)

2P3 P [Broersma et al., 2012]

Table 7.1: Forests F for which the complexity of Vertex Colouring in the class
Free(K3, F ) is known.

Theorem 72. Let F be a graph. If F contains a cycle or F = K1,5, then the Vertex

Colouring problem is NP-complete in the class Free(K3, F ). If F is isomorphic to

S1,2,2, H, cross, P4 + P2, 2P3 or P6, then the problem is polynomial-time solvable in the

class Free(K3, F ).

Proof. If F contains a cycle, then the NP-completeness of the problem follows from

the fact that it is NP-complete for graphs of girth at least k + 1, i.e. in the class

Free(C3, C4, . . . , Ck), for any �xed value of k (see e.g. [Kami«ski and Lozin, 2007a;

Král' et al., 2001]). The NP-completeness of the problem in the class of (K3,K1,5)-free

graphs was shown in [Ma�ray and Preissmann, 1996].

In [Randerath, 2004; Randerath and Schiermeyer, 2002; Randerath, 1998] Ran-

derath et al. showed that every graph in the following three classes is 3-colourable and

that a 3-colouring can be found in polynomial time: Free(K3, H), Free(K3, S1,2,2),

Free(K3, cross). Therefore Vertex Colouring is polynomial-time solvable in these

three classes.

The polynomial-time solvability of the problem in the class Free(K3, P4 + P2)

was shown in [Broersma et al., 2010] and for the class Free(K3, 2P3), it was proved in

[Broersma et al., 2012].
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The conclusion that the problem is solvable for (K3, P6)-free graphs can be de-

rived from two facts. First, the clique-width of graphs in this class is bounded by a

constant [Brandstädt et al., 2006]. Second, the Vertex Colouring problem is solvable

in polynomial time on graphs of bounded clique-width [Rao, 2007]. 2

A particular corollary of this theorem is that the Vertex Colouring problem

is solvable in any subclass of triangle-free graphs de�ned by forbidding a forest with at

most 5 vertices.

Corollary 73. For each forest F on 5 vertices, the Vertex Colouring problem in the

class Free(K3, F ) is solvable in polynomial time.

Proof. If F contains no edge, then the problem is trivial in the class of Free(K3, F ),

since the size of graphs in this class is bounded by a constant (by Ramsey's Theorem).

If F contains at least one edge, then it is an induced subgraph of at least one of the

following graphs: H, S1,2,2, cross, P6. Therefore Free(K3, F ) is a subclass of one the

classes Free(K3, H), Free(K3, S1,2,2), Free(K3, cross), Free(K3, P6), and thus the re-

sult follows from Theorem 72. 2

In the subsequent sections we study subclasses of triangle-free graphs de�ned by

forbidding forests with more than 5 vertices and prove polynomial-time solvability of the

problem in many classes of this type.

7.3 (K3, F )-free graphs with F containing an isolated vertex

In this section we study graph classes Free(K3, F ) with F being a forest on 6 vertices,

at least one of which is isolated. Without loss of generality we may assume that F

contains at least one edge, since otherwise there are only �nitely many graphs in the

class Free(K3, F ) (by Ramsey's Theorem). Throughout the section, an isolated vertex

in F is denoted by v and the rest of the graph is denoted by F0, i.e. F0 = F − v.

Lemma 74. Let F be a forest on 6 vertices with at least one edge and at least one isolated

vertex. Then the chromatic number of any graph G in the class Free(K3, F ) is at most

4 and a 4-colouring can be found in polynomial time.

Proof. Suppose that F0 6= P3 + P2. Then it is not di�cult to verify that F0 is an

induced subgraph of H, S1,2,2 or cross. Therefore the chromatic number of (K3, F0)-free

graphs is at most 3 (see [Randerath, 2004; Randerath and Schiermeyer, 2002]). As a

result, the chromatic number of any (K3, F )-free graph is at most 4. To see this, observe
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that for any vertex x, the graph G \N(x) is 3-colourable, while N(x) is an independent

set.

Now let F0 = P3 + P2. Let ab be an edge in a (K3, F )-free graph G. (If G

has no edges, the chromatic number is 1 and we are done.) We will show that G0 :=

G−(N(a)∪N(b)) is a bipartite graph. Notice that sinceG isK3-free, bothN(a) andN(b)

induce an independent set. We may assume that at least one of N(a) \ {b}, N(b) \ {a} is
non-empty (otherwise each connected component of G has at most two vertices and thus

G is trivially 2-colourable). Obviously G0 is Ck-free for any odd k ≥ 7, since otherwise

G0 (and therefore G) contains a P3 + P2. Therefore we may assume that G0 contains

a C5 (otherwise G0 is bipartite). Let c ∈ N(b) \ {a}. Since G is triangle-free, c can

have at most two neighbours in the C5, and if it has two, they must be non-consecutive

vertices of the C5. Thus c is non-adjacent to at least three vertices in C5, say d, e, f ,

such that G[d, e, f ] is isomorphic to P2 + K1. But now G[a, b, c, d, e, f ] is isomorphic to

P3 + P2 + K1, which is a forbidden graph for G. This contradiction shows that G0 has

no odd cycles, i.e. G0 is a bipartite graph. If V 1
0 , V

2
0 are two colour classes of G0, then

N(a), N(b), V 1
0 , V

2
0 are four colour classes of G. 2

In view of Lemma 74 and the polynomial-time solvability of 2-Colourability,

all we have to do to solve the problem in the classes under consideration is to develop

a tool for deciding 3-colourability in polynomial time. For this, we use a result from

[Randerath et al., 2002]. A set D ⊆ V (G) is dominating in G if every vertex x ∈ V (G)\D
has at least one neighbour in D.

Lemma 75. [Randerath et al., 2002] For a graph G = (V,E) with a dominating set D,

we can decide 3-colourability and determine a 3-colouring in time O(3|D||E|).

If a graph G ∈ Free(K3, F ) is F0-free, then by Corollary 73, the problem is

solvable for G in polynomial time. If G has an induced F0, then the vertices of F0 form a

dominating set in G. Summarising the above discussion, we obtain the following result.

Theorem 76. Let F be a forest on 6 vertices with at least one isolated vertex. Then the

Vertex Colouring problem is polynomial-time solvable in the class Free(K3, F ).

All forests satisfying the conditions of Theorem 76 are listed in Table 7.2.

7.4 Graphs of bounded clique-width

In Section 7.2, we mentioned that the polynomial-time solvability of theVertex Colour-

ing problem in the class of (K3, P6)-free graphs follows from the fact that the clique-
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Graph Graph Name

Empty

P2 + 4K1

P3 + 3K1

2P2 + 2K1

P3 + P2 +K1

K1,3 + 2K1

P4 + 2K1

S1,1,2 +K1

K1,4 +K1

P5 +K1

Table 7.2: Forests F for which polynomial-time solvability of Vertex Colouring in
the class Free(K3, F ) follows from Theorem 76.
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width of graphs in this class is bounded by a constant. In the present section we use

that same idea to solve the problem in the following two classes: Free(K3, S1,1,3) and

Free(K3,K1,3 +K2).

This means that in order to prove polynomial-time solvability of the Vertex

Colouring problem in the classes Free(K3, S1,1,3) and Free(K3,K1,3 + K2), all we

have to do is to show that the clique-width of graphs in these classes is bounded. In our

proofs we use the following helpful facts:

Fact 1: The clique-width of graphs with vertex degree at most 2 is bounded by 4 (see e.g.

[Courcelle and Olariu, 2000]).

Fact 2: The clique-width of S1,1,3-free bipartite graphs [Lozin, 2002a] and (K1,3 +K2)-free

bipartite graphs [Lozin et al., 2008] is bounded by a constant.

Fact 3: For a constant k and a class of graphsX, letX[k] denote the class of graphs obtained

from graphs in X by deleting at most k vertices. Then the clique-width of graphs

in X is bounded if and only if the clique-width of graphs in X[k] is bounded [Lozin

and Rautenbach, 2004].

Fact 4: For a graph G, the subgraph complementation is the operation that consists of

complementing the edges in an induced subgraph of G. Also, given two disjoint

subsets of vertices in G, the bipartite subgraph complementation is the operation

which consists of complementing the edges between the subsets. For a constant

k and a class of graphs X, let X(k) be the class of graphs obtained from graphs

in X by applying at most k subgraph complementations or bipartite subgraph

complementations. Then the clique-width of graphs in X(k) is bounded if and only

if the clique-width of graphs in X is bounded [Kami«ski et al., 2009].

Fact 5: The clique-width of graphs in a hereditary class X is bounded if and only if it is

bounded for connected graphs in X (see e.g. [Courcelle and Olariu, 2000]).

Facts 2 and 5 allow us to reduce the problem to connected non-bipartite graphs in

the classes Free(K3, S1,1,3) and Free(K3,K1,3 + K2), i.e. to connected graphs in these

classes that contain an odd induced cycle of length at least �ve.

Lemma 77. Let G be a connected (K3, S1,1,3)-free graph containing an odd induced cycle

C of length at least 7. Then G = C.

Proof. Let C = v1 − v2 − · · · − v2k − v2k+1 − v1 be an induced cycle in G, of length

2k + 1, k ≥ 3. Suppose that there exists a vertex v ∈ V (G) \ V (C), which is adjacent

105



to a vertex of C. Without loss of generality, we may assume that v is adjacent to v1.

We claim that v is non-adjacent to v4. Otherwise, since G is K3-free, it follows that

v is non-adjacent to v2k+1, v2, v3, v5. But now G[v4, v3, v5, v, v1, v2k+1] is isomorphic to

S1,1,3, a contradiction. Thus v is non-adjacent to v4. This implies that v is adjacent to

v3, since otherwise G[v1, v, v2k+1, v2, v3, v4] would be isomorphic to S1,1,3. Now repeating

the same argument with v3 playing the role of v1, we conclude that v is adjacent to v5.

But now G[v1, v2, v2k+1, v, v5, v4] is isomorphic to S1,1,3. This contradiction shows that

G = C. 2

Lemma 78. Let G be a connected (K3,K1,3 +K2)-free graph containing an odd induced

cycle C2k+1, k ≥ 3. If k ≥ 4 then G = C2k+1 and if k = 3 then |V (G)| ≤ 28.

Proof. Let C = v1−v2−· · ·−v2k−v2k+1−v1 be an induced cycle of length 2k+1 in G.

First consider the case when k ≥ 4. Suppose that there exists a vertex v ∈ V (G) \ V (C)

which is adjacent to some vertex of C, say v1. Since G is K3-free, it follows that v

is non-adjacent to v2k+1, v2. We claim that for every pair of vertices {vi, vi+1}, with
i = 4, 5, . . . , 2k − 2, vertex v is adjacent to exactly one of vi, vi+1. Clearly, since G

is K3-free, v has a non-neighbour in {vi, vi+1}. If v has no neighbours in {vi, vi+1},
then G[v1, v2, v, v2k+1, vi, vi+1] is isomorphic to K1,3 +K2, a contradiction. Now suppose

that v is adjacent to v4. Then it follows that v is complete to {v4, v6, . . . , v2k−2} and
anticomplete to {v5, v7, . . . , v2k−1}. But thenG[v2k−2, v, v2k−3, v2k−1, v2, v3] is isomorphic

to K1,3 +K2, a contradiction. Thus we may assume that v is adjacent to v5. This implies

that v is complete to {v5, v7, . . . , v2k−1} and anticomplete to {v4, v6, . . . , v2k−2}. It follows
that v is non-adjacent to v2k, since G is K3-free. But now G[v5, v4, v6, v, v2k, v2k+1] is

isomorphic to K1,3 +K2. This contradiction shows that G = C.

Now consider the case where k = 3 and let v ∈ V (G) \ V (C) be adjacent to v1.

As before, v has exactly one neighbour in {v4, v5}. By symmetry, we may assume that v

is adjacent to v4. Hence v has no neighbours in {v2, v3, v5, v7}. Finally, observe that v is

non-adjacent to v6, since otherwiseG[v6, v5, v7, v, v2, v3] would be isomorphic toK1,3+K2.

Therefore we conclude that each vertex v ∈ V (G) \V (C) that is adjacent to some vertex

vi ∈ V (C), is either complete to {vi, vi+3} and anticomplete to V (C) \ {vi, vi+3}, or
complete to {vi, vi+4} and anticomplete to V (C) \ {vi, vi+4} (here subscripts are taken

modulo 7).

Let Uj denote the set of vertices at distance j from the cycle. We claim that:

• |U1| ≤ 7. Indeed, if |U1| > 7, then there exist two vertices z, z′ ∈ U1 that are com-

plete to {vi, vi+3} (and thus anticomplete to V (C) \ {vi, vi+3}) for some value of i.
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Since G is K3-free, z, z
′ must be non-adjacent. But then G[vi, z, z

′, vi+1, vi+4, vi+5]

is isomorphic to K1,3 +K2, a contradiction.

• Each vertex of U1 has at most one neighbour in U2. Indeed, suppose a vertex

x ∈ U1 has two neighbours y, z ∈ U2, and without loss of generality let x be

complete to {vi, vi+3} (and thus anticomplete to V (C) \ {vi, vi+3}). Since G is

K3-free, it follows that y, z are non-adjacent. But then G[x, y, z, vi, vi+4, vi+5] is

isomorphic to K1,3 +K2, a contradiction.

• Each vertex of U2 has at most one neighbour in U3, which can be proved by analogy

with the previous claim.

• For each i ≥ 4, Ui is empty. Indeed, assume without loss of generality that U4 6= ∅
and let u4, u3, u2, u1 be a path from U4 to C with uj ∈ Uj and u1 being adjacent

to vi. Then G[vi, vi−1, vi+1, u1, u3, u4] is isomorphic to K1,3 +K2, a contradiction.

From the above claims we conclude that V (G) = V (C) ∪ U1 ∪ U2 ∪ U3, |U3| ≤ |U2| ≤
|U1| ≤ 7 = |V (C)|, and therefore |V (G)| ≤ 28. 2

Thus Lemmas 77 and 78 and Fact 2 further reduce the problem to graphs con-

taining a C5.

Lemma 79. If G is a connected (K3, S1,1,3)-free graph containing a C5, then the clique-

width of G is bounded by a constant.

Proof. Let G be a connected (K3, S1,1,3)-free graph and let C = v1−v2−v3−v4−v5−v1

be an induced cycle of length �ve in G. If G = C then the clique-width of G is at most 4

(Fact 1). Therefore we may assume that there exists at least one vertex v ∈ V (G)\V (C).

Since G is K3-free, v can be adjacent to at most two vertices of C, and if v has two

neighbours in C, they must be non-consecutive vertices of the cycle. We denote the set

of vertices in V (G) \V (C) that have exactly i neighbours in C by Ni, i ∈ {0, 1, 2}. Also,
for i = 1, . . . , 5, we let Vi denote the set of vertices in N2 adjacent to vi−1, vi+1 ∈ V (C)

(throughout the proof subscripts i are taken modulo 5). We call two di�erent sets Vi and

Vj consecutive if vi and vj are consecutive vertices of C, and opposite otherwise. Finally,

we call Vi large if |Vi| ≥ 2, and small otherwise. The proof of the lemma will be given

through a series of claims.

(1) Each Vi is an independent set. This immediately follows from the fact that G is

K3-free.
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(2) N0 is an independent set. Indeed, suppose xy is an edge connecting two vertices

x, y ∈ N0, and, without loss of generality, let y be adjacent to a vertex z ∈ N1∪N2.

Let vi ∈ V (C) be a neighbour of z. Since G is K3-free, z is non-adjacent to

x, vi−1, vi+1. But then G[vi, vi−1, vi+1, z, y, x] is isomorphic to S1,1,3, a contradic-

tion.

(3) Any vertex x ∈ N1 ∪N2 has at most one neighbour in N0. Suppose x ∈ N1 ∪N2 is

adjacent to z, z′ ∈ N0, and let vi ∈ V (C) be a neighbour of x. Since G is K3-free, it

follows that x is non-adjacent to vi−1, vi+1. Furthermore, x is adjacent to at most

one of vi−2, vi+2. By symmetry we may assume that x is non-adjacent to vi−2. But

now G[x, z, z′, vi, vi−1, vi−2] is isomorphic to S1,1,3, a contradiction.

(4) |N1| ≤ 5. Indeed, if there are two vertices x, x′ ∈ N1 which are adjacent to the

same vertex vi ∈ V (C), then G[vi, x, x
′, vi+1, vi+2, vi+3] is isomorphic to S1,1,3, a

contradiction.

(5) If Vi and Vj are opposite sets, then no vertex of Vi is adjacent to a vertex of Vj.

This immediately follows from the fact that G is K3-free.

(6) If Vi and Vj are consecutive, then every vertex x ∈ Vi has at most one non-neighbour

in Vj. Suppose x ∈ Vi has two non-neighbours y, y′ ∈ Vj . By symmetry, we

may assume that j = i + 1. But now, by Claim (1), G[vi−3, y, y
′, vi−2, vi−1, x] is

isomorphic to S1,1,3, a contradiction.

(7) If Vi and Vj are two opposite large sets, then no vertex in N0 has a neighbour in

Vi ∪ Vj . Without loss of generality assume that i = 1 and j = 4, and suppose for a

contradiction that a vertex x ∈ N0 has a neighbour y ∈ V1. If x is non-adjacent to

some vertex z ∈ V4, then G[v3, v4, z, v2, y, x] is isomorphic to S1,1,3, a contradiction.

Therefore x is complete to V4. But now, by Claim (1), G[x, z, z′, y, v2, v1] with

z, z′ ∈ V4 is isomorphic to S1,1,3, a contradiction.

Since G is connected and N0 is an independent set, every vertex of N0 has a

neighbour in N1∪N2. Let V0 be the set of vertices in N0, all of whose neighbours belong

to the large sets Vi. Let G0 be the subgraph of G induced by V0 and the large sets.

From Claims (2),(3) and (4), it follows that at most 25 vertices of G do not belong to

G0. Therefore, by Fact 3, the clique-width of G is bounded if and only if it is bounded

for G0. We may assume that G has at least one large set, since otherwise G0 is empty.

We will show that G0 has bounded clique-width by examining all possible combinations

of large sets.
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Case 1: Suppose that for every large set Vi there is an opposite large set Vj . Then

it follows from Claim (7) that V0 = ∅. In order to see that G0 has bounded clique-width,

we complement the edges between every pair of consecutive large sets. By Claims (5)

and (6), the resulting graph has maximum degree at most 2. From Fact 1 it follows that

this graph is of bounded clique-width, and therefore, applying Fact 4, G0 has bounded

clique-width.

Case 1 allows us to assume that G contains a large set such that the opposite sets

are small. Without loss of generality we let V1 be large, and V3 and V4 be small. The

rest of the proof is based on the analysis of the size of the sets V2 and V5.

Case 2: V2 and V5 are large. Then, by Claims (1), (2), (5), and (7), G0 is a

bipartite graph with bipartition (V1, V2 ∪V5 ∪V0). Therefore by Fact 2, G0 has bounded

clique-width.

Case 3: V2 and V5 are small. Then by Claims (1) and (2), G0 is a bipartite graph

with bipartition (V1, V0), and therefore, by Fact 2, G0 has bounded clique-width.

Case 4: V2 is large and V5 is small, i.e. G0 is induced by V0 ∪ V1 ∪ V2. Consider

a vertex x ∈ V0 that has a neighbour y ∈ V1 and a neighbour z ∈ V2. Then y and z are

non-adjacent (since G is K3-free) and therefore, by Claim (6), y is complete to V2 \ {z}
and z is complete to V1 \{y}. From the K3-freeness of G it follows that x is anticomplete

to (V1 ∪ V2) \ {y, z}.
Let V ′0 denote the vertices of V0 that have neighbours both in V1 and V2, and let

V ′i (i = 1, 2) denote the vertices of Vi that have neighbours in V
′

0 . Also, let V
′′
i = Vi−V ′i

for i = 0, 1, 2, and G′0 = G0[V ′0 ∪ V ′1 ∪ V ′2 ], G′′0 = G0[V ′′0 ∪ V ′′1 ∪ V ′′2 ].

By Claim (3), V ′′0 is anticomplete to V ′1 ∪ V ′2 . Also, it follows from the above

discussion that V ′0 is anticomplete to V ′′1 ∪ V ′′2 , that V ′1 is complete to V ′′2 , and that V ′2 is

complete to V ′′1 . Therefore by complementing the edges between V ′1 and V ′′2 , and between

V ′2 and V ′′1 , we disconnect G′0 from G′′0. The graph G′′0 is a bipartite graph, since every

vertex of V ′′0 has neighbours either in V ′′1 or in V ′′2 but not in both. Thus it follows from

Fact 2 that G′′0 has bounded clique-width. To see that G′0 has bounded clique-width, we

complement the edges between V ′1 and V ′2 . This operation transforms G′0 into a collection

of disjoint triangles. Therefore the clique-width of G′0 is bounded. Now it follows from

Fact 4 that G0 has bounded clique-width. 2

Similarly to Lemma 79, one can prove the following result.

Lemma 80. If G is a connected (K3,K1,3 + K2)-free graph containing a C5, then the

clique-width of G is bounded by a constant.
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Proof. The proof is similar to the proof of Lemma 79. Let G be a connected (K3,K1,3 +

K2)-free graph and let C = v1 − v2 − v3 − v4 − v5 − v1 be an induced cycle of length

�ve in G. If G = C then the clique-width of G is at most 4 (Fact 1). Therefore we may

assume that there exists at least one vertex v ∈ V (G) \ V (C). Since G is K3-free, v can

be adjacent to at most two vertices in C, and if v has two neighbours in C, they must be

non-consecutive vertices of C. We denote the set of vertices in V (G) \ V (C) that have

exactly i neighbours in C by Ni, i ∈ {0, 1, 2}. Also, for i = 1, . . . , 5, we let Vi denote

the set of vertices in N2 adjacent to vi−1, vi+1 ∈ V (C) (throughout the proof subscripts

i are taken modulo 5). We call two di�erent sets Vi and Vj consecutive if vi and vj are

consecutive vertices of C, and opposite otherwise. Finally, we call Vi large if |Vi| ≥ 7, and

small otherwise. The proof of the lemma will be given through a series of claims.

(1) Each Vi is an independent set. This immediately follows from the fact that G is

K3-free.

(2) |N1| ≤ 10. Indeed, if there are three vertices x, x′, x′′ ∈ N1 which are adjacent to the

same vertex vi ∈ V (C), then G[vi, x, x
′, x′′, vi+2, vi+3] is isomorphic to K1,3 + K2,

a contradiction (notice that x, x′, x′′ are pairwise non-adjacent since G is K3-free).

(3) If Vi and Vj are opposite sets, then no vertex of Vi is adjacent to a vertex of Vj.

This immediately follows from the fact that G is K3-free.

(4) If Vi and Vj are consecutive, then every vertex of Vi has at most two non-neighbours

in Vj. By symmetry, we may assume j = i + 1. Suppose x ∈ Vi has three non-

neighbours y, y′, y′′ ∈ Vj . Then by Claim (1), G[vi+2, y, y
′, y′′, vi−1, x] is isomorphic

to K1,3 +K2, a contradiction.

(5) Each vertex w ∈ N0 is adjacent to at most two vertices in a set Vi. Indeed,

if w ∈ N0 were adjacent to three vertices z, z′, z′′ ∈ Vi, then by Claim (1),

G[w, z, z′, z′′, vi+2, vi+3] would be isomorphic to K1,3 +K2, a contradiction.

(6) N0 induces a graph of vertex degree at most two. Moreover, if there exists at

least one large set, then N0 is an independent set. If a vertex w ∈ N0 has three

neighbours z, z′, z′′ ∈ N0, then G[w, z, z′, z′′, v1, v2] is isomorphic to K1,3+K2, since

G is K3-free. This contradiction proves the �rst part of the claim. To prove the

second part, assume Vi is a large set and suppose that two vertices w,w′ ∈ N0 are

adjacent. Since Vi is large, it follows from Claim (5) that there exist at least three

vertices z, z′, z′′ ∈ Vi which are anticomplete to {w,w′}. But now, by Claim (1),

G[vi−1, z, z
′, z′′, w, w′] is isomorphic to K1,3 +K2, a contradiction.
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(7) If Vi and Vj are two opposite large sets, then no vertex in N0 has a neighbour in

Vi ∪ Vj . Without loss of generality, assume that i = 1 and j = 4, and suppose

for contradiction, that a vertex w ∈ N0 has a neighbour y ∈ V1. Since V4 is large

and since w is adjacent to at most two vertices in V4 (Claim (5)), it follows that

w has two non-neighbours z, z′ ∈ V4. But now, by Claim (1), G[v3, v4, z, z
′, w, y] is

isomorphic to K1,3 +K2, a contradiction.

(8) Any vertex x ∈ N1 ∪N2 has at most two neighbours in N0. Indeed, for any vertex

x ∈ N1 ∪ N2 there exist at least two consecutive vertices of C non-adjacent to x.

These two vertices together with x and any three neighbours of x in N0 would

induce a K1,3 +K2.

From Claim (6) and Fact 1 we know that the clique-width of G[N0] is at most 4.

Therefore, if all sets Vi are small, then G has bounded clique-width, which follows from

Claim (2) and Fact 3.

From now on, we assume that there exists at least one large set Vi. This implies

that N0 is an independent set (Claim (6)). Since G is connected, every vertex of N0 has a

neighbour in N1∪N2. Let V0 be the set of vertices in N0, all of whose neighbours belong

to the large sets Vi. Let G0 be the subgraph of G induced by V0 and the large sets. From

Claims (2) and (8), it follows that the size of V (G) \ V (G0) is bounded. Therefore, by

Fact 3, the clique-width of G is bounded if and only if it is bounded for G0. We will

show that G0 has bounded clique-width by examining all possible combinations of large

sets.

Case 1: Suppose that for every large set Vi there is an opposite large set Vj . Then

it follows from Claim (7) that V0 = ∅. Let Vi−1 and Vi+1 be large sets. We claim that

every vertex x ∈ Vi is complete to Vi−1 ∪ Vi+1. For suppose not: let y ∈ Vi+1 be a

non-neighbour of x. Since Vi−1 is large, it follows from Claim (4) that x has at least

two neighbours z, z′ ∈ Vi−1. But now, by Claims (1) and (3), G[x, z, z′, vi−1, vi+2, y] is

isomorphic to K1,3 + K2, a contradiction. In order to see that G0 is of bounded clique-

width, we complement the edges between every pair of consecutive large sets. From

Claim (4) and the discussion above, it follows that the resulting graph is of vertex degree

at most 2. From Fact 1 it follows that this graph has bounded clique-width, and therefore

applying Fact 4, G0 has bounded clique-width.

Case 1 allows us to assume that G contains a large set such that the opposite sets

are small. Without loss of generality we let V1 be large, and V3 and V4 be small. The

rest of the proof is based on the analysis of the size of the sets V2 and V5.
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Case 2: V2 and V5 are large. Then by Claims (1),(3),(6) and (7), G0 is a bipartite

graph with bipartition (V1, V2 ∪ V5 ∪ V0). Therefore by Fact 2, G0 has bounded clique-

width.

Case 3: V2 and V5 are small. Then, by Claims (1) and (6), G0 is a bipartite graph

with bipartition (V1, V0), and therefore, by Fact 2, G0 has bounded clique-width.

Case 4: V2 is large and V5 is small, i.e. G0 is induced by V0 ∪ V1 ∪ V2. Consider

a vertex w ∈ V0 that is adjacent to some vertex x ∈ V1 (resp. y ∈ V2). We claim that

(9) w is complete to all the non-neighbours of x in V2 (resp. of y in V1). By symmetry

we let x belong to V1 and for contradiction, suppose that w is non-adjacent to a

non-neighbour z ∈ V2 of x. Since V1 is large, it follows from Claims (4) and (5) that

V1 contains three vertices x1, x2, x3 adjacent to z and non-adjacent to w. But now,

by Claim (1), G0[z, x1, x2, x3, x, w] is isomorphic to K1,3 +K2, a contradiction.

In order to see that G0 has bounded clique-width, we complement the edges

between V1 and V2. Let us denote the resulting graph by G′0. From Facts 4 and 5, it

follows that it is enough to show that each connected component of G′0 has bounded

clique-width. Let C∗ be a component of G′0. If C
∗ has maximum vertex degree at most

two, then C∗ has bounded clique-width by Fact 1. So we may assume that C∗ contains

a vertex x of degree at least three.

First suppose that x ∈ V1 ∪ V2. By symmetry, we may assume x ∈ V1. We

know that in the graph G′0, vertex x has at most two neighbours in V0 (Claim (8))

and at most two neighbours in V2 (Claim (4)). Therefore, x is adjacent to some vertex

y ∈ V2 and to some vertex w ∈ V0 in the graph G′0. Since in the graph G0 vertex y is

a non-neighbour of x, it follows from Claim (9) that y, w are adjacent. Repeating this

argument, we conclude that w is complete to V (C∗)∩ (V1∪V2). By Claim (5), we obtain

that |V (C∗)∩ (V1 ∪V2)| ≤ 4. Since each vertex in V1 ∪V2 has at most two neighbours in

V0 (Claim (8)), we �nally conclude that |V (C∗)| ≤ 12 and therefore the clique-width of

C∗ is at most 12.

Now suppose that x ∈ V0 and all vertices of C∗ in V1 ∪ V2 have degree at most

2. Since V0 is an independent set, all neighbours of x are in V1 ∪ V2. Let z, z
′, z′′ denote

three neighbours of x. Without loss of generality we may assume that z, z′ ∈ V1 and

z′′ ∈ V2 (Claim (5)). Since G is K3-free, it follows that in C
∗, vertex z′′ is adjacent to

both z and z′. But now z′′ ∈ V2 has degree at least three, contradicting our assumption.

2

From Lemmas 77, 78, 79, and 80, we derive the main result of this section.
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Theorem 81. The clique-width of (K3, S1,1,3)-free graphs and (K3,K1,3+K2)-free graphs

is bounded by a constant and therefore the Vertex Colouring problem is polynomial-

time solvable in these classes of graphs.

7.5 (K3, S1,2,3, S1,1,2 + P2)-free graphs

In this section we prove polynomial-time solvability of the problem in the class of (K3,

S1,2,3, S1,1,2 + P2)-free graphs. It is not di�cult to see that both S1,2,3 and S1,1,2 + P2

contain P4+P2 as an induced subgraph. Therefore, our result generalises a recent solution

of the problem in the class of (K3, P4 +P2)-free graphs [Broersma et al., 2010]. Our result

is based on a sequence of lemmas.

(a) S1,2,3 (b) S1,1,2 + P2

Figure 7.1: The graphs S1,2,3 and S1,1,2 + P2.

Lemma 82. Let G be a (K3, S1,2,3, S1,1,2 + P2)-free graph. Then the chromatic number

of G is at most 4 and a 4-colouring of G can be found in polynomial time.

Proof. We may assume G is connected and contains an edge ab. Note that since G is

K3-free, G[N(a) ∪ N(b)] is a bipartite graph. Let X = V (G) \ (N(a) ∪ N(b)). We will

now show that G[X] is bipartite, in which case G is 4-colourable. Indeed, suppose for

contradiction that G[X] is not bipartite. Then, since it is K3-free, it must contain an

induced odd cycle v1 − · · · − v2k+1 − v1 with k ≥ 2.

Let w1, w2, . . . , wq be a shortest path from this cycle to a, with wq = a and

w1 = vi for some i ∈ {1, . . . , 2k + 1}. If q = 3 then w2 ∈ N(a) \ {b}. In this case let

w4 = b.

Vertex w2 cannot be adjacent to vi−1 or vi+1 since G is K3-free. But now w2 must

be adjacent to vi+2, otherwise G[vi, vi−1, vi+1, vi+2, w2, w3, w4] would be isomorphic to

S1,2,3. Since vertex vi was chosen arbitrarily, we can repeat this argument k times to �nd

that w2 must be adjacent to 2 consecutive vertices in the cycle. But this cannot happen,

since G is K3-free. This contradiction completes the proof. 2
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Lemma 82 reduces Vertex Colouring in the class of (K3, S1,2,3, S1,1,2+P2)-free

graphs to 3-Colourability. We now prove some lemmas to help solve this problem.

Lemma 83. Let G be a connected (K3, S1,2,3, S1,1,2 + P2)-free graph containing an odd

induced cycle C of length at least 9. Then G = C.

Proof. Let C = v1− v2− · · · − v2k+1 be an induced odd cycle of length at least 9 in G.

Let x be adjacent to some vertex vi on C. Then obviously it is adjacent to neither vi−1

nor vi+1, since the graph is K3-free. If in addition it is non-adjacent to vi−2, then the

subgraph of G induced by vi, vi+1, vi−1, vi−2, x, vi+3, vi+4 is either isomorphic to S1,2,3 (if

x has a neighbour in {vi+3, vi+4}) or to S1,1,2 +P2 (if x has no neighbour in {vi+3, vi+4}).
Therefore, x is adjacent to vi−2. But vi was an arbitrary vertex of the cycle, so as in the

proof of Lemma 82, by iterating this argument k times, we �nd that G must contain a

K3, which is a contradiction. 2

Lemma 84. Let G be a connected (K3, S1,2,3, S1,1,2+P2)-free graph containing an induced

cycle C of length 7. Then C is dominating.

Proof. Suppose G is connected and contains an induced cycle C = v1−v2−v3−v4−v5−
v6− v7− v1. If C is not dominating then there must exist vertices x and y such that y is

not adjacent to any vertex of the cycle and x is adjacent to both y and some vertex of the

cycle, say v1. x is non-adjacent to v2 and v7 since G is K3-free. So x must be adjacent to

v4 or v5, otherwise G[v1, v2, v7, x, y, v4, v5] would be isomorphic to S1,1,2 + P2. Without

loss of generality, assume that x is adjacent to v4. Since G is K3-free, x is non-adjacent

to v3 and v5. Now, x must be adjacent to v6, otherwise G[v1, x, v2, v3, v7, v6, v5] would

be isomorphic to S1,2,3. But then G[v6, v5, v7, x, y, v2, v3] is isomorphic S1,1,2 + P2. This

contradiction leads to the conclusion that such vertices x and y cannot exist and thus C

is dominating. 2

Let B be a connected bipartite induced subgraph of a graph G with at least 3

vertices. We say that the vertices in one part of B are odd and those in the other part

are even. If two vertices are in the same part of B, we say they have the same parity.

The following lemma is an easy observation.

Lemma 85. Suppose a graph G has a connected bipartite induced subgraph B, |V (B)| ≥
3, and that for every vertex x 6∈ B, x is either complete or anticomplete to the odd vertices

in B and is either complete or anticomplete to the even vertices in B. Then all vertices

of B except any two adjacent vertices can be deleted from G and the new graph has a

3-colouring if and only if G does.

114



Lemma 86. Let G be a connected (K3, S1,2,3, S1,1,2+P2)-free graph containing an induced

cycle C of even length k ≥ 8. If a vertex x has a neighbour on the cycle, then x is adjacent

to all vertices of the same parity with respect to C.

Proof. Let x be adjacent to a vertex vi on the cycle. Then obviously it is adjacent

to neither vi−1 nor vi+1, since the graph is K3-free. If it is also non-adjacent to vi−2,

then the subgraph of G induced by vi, vi+1, vi−1, vi−2, x, vi+3, vi+4 is either isomorphic

to S1,2,3 (if x has a neighbour in {vi+3, vi+4}) or to S1,1,2 + P2 (if x has no neighbour in

{vi+3, vi+4}). Therefore, x is adjacent to vi−2. Since vertex vi was chosen arbitrarily, x

must be adjacent to all vertices which have the same parity as vi. 2

Notice that we may assume that G satis�es the following property:

(*) for any two non-adjacent vertices u and v, there exists a neighbour of u which is

non-adjacent to v and there exists a neighbour of v which is non-adjacent to u.

Indeed if a pair of vertices does not satisfy Property (*), then the neighbourhood

of one of the vertices u, v is included in the neighbourhood of the other. In this case the

�rst vertex can be deleted from the graph G and it is easy to see that the new graph has

a 3-colouring if and only if the original graph does.

Lemma 87. Let G be a (K3, S1,2,3, S1,1,2 + P2)-free graph with Property (*) and let P a

be an induced path in G with at least 8 vertices. If a vertex x is adjacent to a vertex of

degree 2 in P , then x is adjacent to all vertices of the same parity in P .

Proof. Let P be the path v1 − v2 − · · · − vk with k ≥ 8. Suppose, for contradiction,

that x has a neighbour vi with 2 < i ≤ k − 1, such that x is not adjacent to vi−2 (the

case where x is not adjacent to vi+2 is symmetric). Clearly x cannot be adjacent to vi−1

or vi+1 since G is K3-free.

If i < k−3, then G[vi, x, vi+1, vi−1, vi−2, vi+3, vi+4] is either isomorphic to S1,2,3 (if

x has a neighbour in {vi+3, vi+4}) or to S1,1,2 +P2 (if x has no neighbour in {vi+3, vi+4}).
Thus we may assume i ≥ k − 3.

But now if k ≥ 9 or k = 8, i ≥ k − 2, then G[vi, x, vi+1, vi−1, vi−2, vi−4, vi−5] is

either isomorphic to S1,2,3 (if x has a neighbour in {vi−5, vi−4}) or to S1,1,2 +P2 (if x has

no neighbour in {vi−5, vi−4}). This contradiction proves that if k ≥ 9 or k = 8, i 6= k−3,

then x must be adjacent to vi−2.

Now let us analyse the case when k = 8 and i = k−3 = 5. By the above argument

for k = 8, i = 3, we conclude that x is adjacent to v7. Since G satis�es Property (*),
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vertex v6 must have a neighbour y which is non-adjacent to x. From the �rst part of the

proof, we know that y must be adjacent to v8 and v4 and therefore to v2. But x cannot

be adjacent to v2, since then it would have to be adjacent to v4, contradicting the fact

that G is K3-free. If x is adjacent to v1, then G[y, v6, v8, v4, v3, v1, x] is an S1,1,2 + P2. If

x is non-adjacent to v1, then G[y, v4, v2, v1, v6, v7, x] is an S1,2,3. This �nal contradiction

completes the proof of the lemma. 2

We may also assume that G satis�es the following property (otherwise we can

apply Lemma 85):

(**) For any induced path P in G on 6 or 7 vertices, there is a vertex x ∈ V (G) \ V (P )

which has both a neighbour and a non-neighbour of the same parity in P .

Let G denote the subclass of (K3, S1,2,3, S1,1,2 + P2, C7, C8, P8)-free graphs with

Properties (*) and (**).

Lemma 88. Any connected graph G ∈ G containing an induced P6 has chromatic number

at most 3 and a 3-colouring of G can be found in polynomial time.

Proof. Let Q denote the graph obtained from a C6 by adding a vertex which has exactly

one neighbour on the cycle (see Figure 7.2). We split the proof into two cases.

Figure 7.2: The graph Q

Case 1 : G contains an induced subgraph isomorphic to Q. Say Q is induced by

vertices a, b, c, d, e, f, g ∈ V (G) where a − b − c − d − e − f − a is a chordless cycle and

the only neighbour of g on the cycle is e. The vertices of G outside the set {a, b, c} can
be partitioned into at most 5 non-empty subsets in the following way:

Va is the set of vertices adjacent to a and non-adjacent to b and c,

Vb and Vc are de�ned by analogy with Va,
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Vac is the set of vertices adjacent to a and c and non-adjacent to b,

W is the set of vertices anticomplete to {a, b, c}.

Note that Va, Vb, Vc and Vac are independent sets, since G is K3-free. We will

split W into independent sets. We will investigate the possible edges between all these

independent sets and �nally, we will show how to obtain a 3-colouring of G.

(i) For any edge uv in G[W \ {e, g}], at least one of u, v has a neighbour in {e, g}.
Suppose not. Then since G[e, d, g, f, a, u, v] cannot be isomorphic to S1,1,2 + P2, it

follows that at least one of u, v is adjacent to one of d, f . Without loss of generality,

we may assume that u is adjacent to f . But then G[f, u, e, g, a, b, c] would be an

S1,2,3, a contradiction.

We may now partitionW into two setsW0 andW1, where G[W1] is the connected

component of G[W ] containing e and g. Notice that W0 = W \W1 is an independent set

(by (i)).

(ii) For every edge uv in G[W1], exactly one of u, v has a neighbour in {d, f}. This

is trivially true for every edge incident to e. Now consider an edge ug in G[W1],

where u 6= e. Notice that g is non-adjacent to d, f . If u is non-adjacent to d, f , then

G[e, f, g, u, d, c, b] is isomorphic to S1,2,3, a contradiction. Thus u is adjacent to at

least one of d, f . Now consider an edge uv in G[W1] such that u, v 6= e, g. Since G

is (K3, C7)-free, at most one of u, v can have a neighbour in {d, f}. Suppose that
u, v are non-adjacent to d, f . From the previous case, we may assume that u, v are

non-adjacent to g. It follows from (i) that one of u, v is adjacent to e. Without loss

of generality we may assume that u is adjacent to e. But then G[e, g, u, v, f, a, b]

would be isomorphic to S1,2,3, which is a contradiction.

(iii) G[W1] is complete bipartite. First let us show that every vertex u ∈ W1 \ {e, g} is
adjacent to exactly one of e, g. Clearly no vertex can be adjacent to both e and g

since G is K3-free. Now let u ∈ W1 \ {e, g} and suppose that u is non-adjacent to

e, g. If u is adjacent to f (resp. d) then G[f, u, e, g, a, b, c] (resp. G[d, u, e, g, c, b, a])

is isomorphic to S1,2,3, a contradiction. Now let v be a neighbour of u in W1. It

follows from (ii) that v is adjacent to at least one of d, f . We may assume that v is
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adjacent to f . But now G[f, e, v, u, a, b, c] is isomorphic to S1,2,3, a contradiction.

Thus every vertex u ∈ W1 \ {e, g} is indeed adjacent to exactly one of e, g. Let

W1(g) be the vertices in W1 which are adjacent to e and let W1(e) be the vertices

adjacent to g. Notice that e ∈ W1(e) and g ∈ W1(g). Now we only need to show

that W1(e) is complete to W1(g). Suppose not. Let w ∈W1(g) and w′ ∈W1(e) be

non-adjacent. Since g is non-adjacent to d, f , it follows from (ii) that w′ is adjacent

to at least one of d, f . Without loss of generality we may assume that w′ is adjacent

to f . But now G[f, w′, e, w, a, b, c] is isomorphic to S1,2,3, a contradiction.

Notice that since e is adjacent to d, f , (ii) implies that W1(g) must be anticom-

plete to {d, f} and that every vertex in W1(e) is adjacent to at least one of d, f .

(iv) Let v ∈ Va ∪ Vc with v 6= d, f . Then for every edge ww′ in G[W1], exactly one of

w,w′ is adjacent to v. Suppose not. Without loss of generality, assume v ∈ Vc,

w ∈W1(e) and w′ ∈W1(g). But then G[c, v, b, a, d, w,w′] is isomorphic to S1,2,3 (if

dw ∈ E(G)) or to S1,1,2 + P2 (if dw 6∈ E(G)), which is a contradiction.

(v) There exist no two vertices u, v ∈ W1(e) such that uf, vd ∈ E(G) and ud, vf 6∈
E(G). Suppose, for contradiction, that two such vertices exist. Notice that u, v 6= e.

But then G[d, v, c, b, e, f, u] is isomorphic to S1,2,3, a contradiction.

Thus either d or f is complete to W1(e). Without loss of generality, we may

assume f is complete to W1(e). Then by (iii) and (iv) it follows that we may partition

Va into Va = V 1
a ∪V 2

a such that V 1
a is complete to W1(e) and anticomplete to W1(g) and

V 2
a is complete to W1(g) and anticomplete to W1(e). From (iii) and (iv) it also follows

that we may partition Vc into Vc = V 1
c ∪V 2

c such that every vertex in V 1
c has a neighbour

in W1(e) and is anticomplete to W1(g) and every vertex in V 2
c has a neighbour in W1(g)

and is anticomplete to W1(e). Since G is K3-free, V
1
a must be anticomplete to V 1

c and

V 2
a must be anticomplete to V 2

c .

(vi) W0 is anticomplete to Va ∪ Vc. Let u ∈ W0 and suppose that u is adjacent to

some vertex v in Va ∪ Vc. Consider an edge ww′ in G[W1]. It follows from (iv)

that exactly one vertex of w,w′ is adjacent to v. We may assume without loss of

generality that w is adjacent to v. But now G[v, u, w,w′, a, b, c] is isomorphic to

S1,2,3, a contradiction.

118



(vii) W1(g) and W0 have no common neighbours in Vac. Suppose that w ∈ W1(g) and

u ∈ W0 have a common neighbour v ∈ Vac. Since G is K3-free, e is non-adjacent

to v. But then G[v, u, a, b, w, e, d] is isomorphic to S1,2,3, a contradiction.

Let X denote the subset of vertices of Vac that have a neighbour in W1(g) and let

Y denote the remaining vertices of Vac. Notice that X is anticomplete to W1(e) since G

is K3-free. From the above and the fact that G is K3-free, we conclude that each of the

following three sets is independent: V 2
a ∪V 2

c ∪W1(e)∪W0∪{b}∪X, V 1
a ∪V 1

c ∪W1(g)∪Y ,
Vb ∪{a, c}. Therefore G is 3-colourable and such a colouring can be found in polynomial

time.

Case 2 : G contains no induced subgraph isomorphic to Q. Suppose that the

vertices a, b, c, d, e, f induce a P6 with edges {ab, bc, cd, de, ef} (we know that G contains

an induced P6). The vertices outside the set {b, c, d, e} can be partitioned into at most

8 non-empty sets as follows:

Vb is the set of vertices adjacent to b and non-adjacent to c, d, e,

Vc, Vd, Ve are de�ned by analogy with Vb,

Vbd is the set of vertices adjacent to b and d and non-adjacent to c and e,

Vce and Vbe are de�ned by analogy with Vbd,

W is the set of vertices anticomplete to {b, c, d, e}.

(i) Vb is anticomplete to Ve. Note that a ∈ Vb and f ∈ Ve. We know that af 6∈ E(G).

Suppose a has a neighbour u ∈ Ve \ {f}. Then G[a, b, c, d, e, u, f ] is isomorphic to

Q, a contradiction. Therefore a is anticomplete to Ve. Now suppose that there exist

two adjacent vertices u ∈ Vb \ {a}, v ∈ Ve. Then G[b, c, d, e, v, u, a] is isomorphic to

Q. This contradiction shows that Vb is anticomplete to Ve.

(ii) Every vertex in W is either complete to Vb (resp. Ve) or anticomplete to Vb (resp.

Ve). Suppose there exists a vertex w ∈ W which is adjacent to some vertex u ∈
Vb and non-adjacent to some other vertex v ∈ Vb. Then G[b, v, u, w, c, d, e] is

isomorphic to S1,2,3, a contradiction. Thus the claim holds for Vb and by symmetry

we conclude that it holds for Ve as well.
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(iii) No vertex in W is complete to both Vb and Ve. Suppose a vertex w ∈W is complete

to Vb ∪ Ve. Then G[a, b, c, d, e, f, w] is isomorphic to C7, a contradiction.

It follows from the above that we may partition W into three sets Wb,We,W0,

whereWb is complete to Vb and anticomplete to Ve,We is complete to Ve and anticomplete

to Vb, and W0 is anticomplete to Vb ∪ Ve. Notice that Wb and We are both independent

sets.

(iv) At most one of Wb,We is non-empty. Indeed if both Wb and We are non-empty,

say u ∈Wb and v ∈We, then G[u, a, b, c, d, e, f, v] is either isomorphic to C8 or P8,

a contradiction.

It follows from (iv) that we may assume without loss of generality that We =

∅. Thus W is anticomplete to Ve. Furthermore, |Wb| ≤ 1, since if u, v ∈ Wb, then

G[a, u, v, b, c, e, f ] is isomorphic to S1,1,2 + P2, a contradiction.

(v) W is an independent set. Suppose W contains an edge uv and that u ∈Wb. Since

G is K3-free, it follows that v is non-adjacent to a. But now G[v, u, a, b, c, d, e, f ]

is isomorphic to P8. This contradiction shows that neither u nor v has neighbours

in Vb, hence u, v ∈W0.

We let P denote either the induced path P6 = {ab, bc, cd, de, ef} (if Wb = ∅) or the
induced path P7 = {ya, ab, bc, cd, de, ef} (if Wb = {y}). We label the vertices of P

by natural numbers 1, 2, . . . , 6 or 1, 2, . . . , 7 and let k be the number of vertices in

P .

Suppose a vertex z outside P has a neighbour in P . Then it must be adjacent to

a vertex i of degree 2 in P . Note that W0 and P are anticomplete, so z 6= u, v.

This implies that z is adjacent to i−2 (if i > 2), since otherwise G[i, i+1, i−1, i−
2, z, u, v] induces either an S1,2,3 (if z has a neighbour in {u, v}) or an S1,1,2 + P2

(if z has no neighbour in {u, v}). Similarly z must be adjacent to i+ 2 if i < k− 1.

As a result z is adjacent to all vertices of the same parity in P . Therefore, if W

is not an independent set, then G does not have Property (**). This contradiction

implies that W is an independent set.

(vi) Wb is anticomplete to Vd. Let Wb = {y}. Suppose that y is adjacent to u ∈ Vd.
Then G[a, b, c, d, u, y, e] is isomorphic to Q, a contradiction.

(vii) W0 is anticomplete to Vc ∪ Vd. By symmetry it is enough to show that W0 is

anticomplete to Vc. Suppose that a vertex w ∈ W0 is adjacent to some vertex
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u ∈ Vc. Then u must be adjacent to f otherwise G[c, b, u, w, d, e, f ] would be

isomorphic to S1,2,3, a contradiction. Now we claim that u is adjacent to a. Suppose

not, thenG[u,w, f, e, c, b, a] would be isomorphic to S1,2,3, a contradiction. But now

G[u,w, a, b, f, e, d] is isomorphic to S1,2,3, a contradiction.

(viii) One of Wb, Vbe is empty. Indeed, suppose Wb = {y} and u ∈ Vbe. If y is non-

adjacent to u then G[b, c, a, y, u, e, f ] is isomorphic to S1,2,3, a contradiction. On

the other hand, if y is adjacent to u, then G[e, f, d, c, u, y, a] is isomorphic to S1,2,3,

a contradiction.

(ix) If Wb = ∅, then G is 3-colourable. First, suppose that W0 is anticomplete to Vbe.

Then it is easy to see that the following are independent sets: W0∪Vb∪Ve∪Vbe∪{c},
Vbd ∪ Vd ∪ {e}, {b, d} ∪ Vce ∪ Vc. So we may now assume that there exists a vertex

w ∈ W0 which has a neighbour v ∈ Vbe. We claim that v must be complete

to Vc ∪ Vd. Suppose that v is non-adjacent to some vertex u ∈ Vc. Then f is

adjacent to u, since otherwise G[v, w, e, f, b, c, u] would be isomorphic to S1,2,3, a

contradiction. But now G[c, d, u, f, b, v, w] is isomorphic to S1,2,3, a contradiction.

Thus v is complete to Vc and by symmetry we conclude that v is complete to Vd as

well. Hence Vc and Vd are anticomplete. Now we obtain a 3-colouring as follows:

Vb ∪ Vbe ∪ Vbd ∪ {c}, {b, e} ∪ Vc ∪ Vd ∪W0, {d} ∪ Ve ∪ Vce.

It follows from (ix) that we may now assume that Wb = {y} and hence Vbe = ∅.
We claim that Ve is complete to Vd. Suppose some vertex u ∈ Vd is non-adjacent to some

vertex v ∈ Ve. Then umust be adjacent to a, otherwise G[d, u, e, v, c, b, a] is isomorphic to

S1,2,3, a contradiction. But now G[d, c, e, v, u, a, y] is isomorphic to S1,2,3, a contradiction.

Thus Ve is complete to Vd. This implies that Vb is anticomplete to Vd. Indeed if a vertex

u ∈ Vb is adjacent to some vertex v ∈ Vd, then G[u, y, b, c, v, f, e] is isomorphic to S1,2,3, a

contradiction. Now we obtain a 3-colouring as follows: Vb∪Vbd∪Vd∪{c, e}, {b, d}∪Ve∪W ,

Vce ∪ Vc.
This completes the proof that any connected graph G ∈ G containing an induced

P6 has chromatic number at most 3. From the above, it is easy to see that a 3-colouring

of G can be found in polynomial time. 2

Theorem 89. The Vertex Colouring problem is solvable in polynomial time in the

class of (K3, S1,2,3, S1,1,2 + P2)-free graphs.

Proof. Since we can solve the problem component-wise in G, we may assume that G

is connected. It follows from Lemmas 75, 82, 83 and 84 that the problem reduces to
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3-Colourability of (K3, S1,2,3, S1,1,2 + P2)-free graphs which contain no odd induced

cycle of length at least 7. Also, we only need to consider graphs that satisfy Property (*).

Lemmas 85, 86 and 87 further reduce the problem in polynomial time to those graphs

that contain no induced paths or induced even cycles of length at least 8. The reduction

is as follows:

• Check if G contains a P8 or C8. If G contains a C8 apply Lemmas 85 and 86. If

G contains a P8 extend it to a maximal (with respect to set inclusion) induced

path P . This can obviously be done in polynomial time. If there is a vertex which

creates a cycle with P , by Lemma 86, we can apply Lemma 85. Otherwise, every

vertex of G which has a neighbour on P must be adjacent to a vertex of degree 2

in P , in which case Lemma 87 tells us we can apply Lemma 85.

The above procedure further reduces the problem to 3-Colourability of (K3,

S1,2,3, S1,1,2 + P2)-free graphs with Property (*) that are (C7, C8, P8)-free. Finally, if G

does not satisfy Property (**), we can �nd a suitable path on 6 or 7 vertices and apply

Lemma 85. We may therefore assume G satis�es Property (**).

Note that all of the above reductions work in polynomial time and either solve

the 3-Colourability problem or delete vertices from the graph, so at most |V (G)| such
reductions can be applied. We may now assume that G is a connected (K3, S1,2,3, S1,1,2 +

P2, C7, C8, P8)-free graph satisfying Properties (*) and (**), i.e. G ∈ G.
Now if G is P6-free, we can solve the 3-Colourability problem in polynomial

time by Theorem 72 and if G is not P6-free, we can solve the problem in polynomial time

using Lemma 88. This completes the proof. 2

7.6 Further results

In this section we prove a few additional results. The �rst two results deal with graph

classes Free(K3, F ) where F is a �big� forest of simple structure.

Theorem 90. For every �xed m, the Vertex Colouring problem is polynomial-time

solvable in the class Free(K3,mK2).

Proof. Obviously, if a graph G is k-colourable, then it admits a k-colouring in which

one of the colour classes is a maximal independent set.

It is known that for every �xed m the number of maximal independent sets in

the class Free(mK2) is bounded by a polynomial [Balas and Yu, 1989] and all of them
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can be found in polynomial time [Tsukiyama et al., 1977]. Therefore, given an mK2-free

graph G, we can solve the 3-Colourability problem for G by generating all maximal

independent sets and solving 2-Colourability for the remaining vertices of the graph.

Then by induction on k, we conclude that for any �xed k the k-Colourability problem

can be solved in the class Free(mK2) in polynomial time. Since the chromatic number

of (K3,mK2)-free graphs is bounded by 2m− 2 (see e.g. [Brandt, 2002a]), the Vertex

Colouring problem is polynomial-time solvable in the class Free(K3,mK2) for any

�xed m. 2

Theorem 91. For every �xed m, the Vertex Colouring problem is polynomial-time

solvable in the class Free(K3, P3 +mK1).

Proof. To prove the theorem, we will show that for any �xed m, graphs in the class

Free(K3, P3+mK1) are either bounded in size, or they are 3-colourable and a 3-colouring

can be found in polynomial time.

Let G be a (K3, P3 +mK1)-free graph. We start by �nding a maximum indepen-

dent set in G. For each �xed m, this problem is solvable in polynomial time, which can

easily be seen by induction on m. Let S be a maximum independent set in G. Let R

denote the remaining vertices of G, i.e. R = V (G)−S. We may assume that R contains

an induced odd cycle C = v1 − v2 − · · · − vp − v1 with p ≥ 5. Since S is a maximum

independent set, each vertex of C has at least one neighbour in S. Let us call a vertex

vi ∈ V (C) strong if it has at least 2 neighbours in S and weak otherwise. Since C is an

odd cycle, it has either two consecutive weak vertices or two consecutive strong vertices.

If C has two consecutive weak vertices, say v1, v2, then jointly they are adjacent

to two vertices of S, say v1 is adjacent to s1, and v2 is adjacent to s2, and therefore, they

have |S| − 2 common non-neighbours in S. If |S| − 2 ≥ m, then s1, v1, v2 together with

m vertices in S \ {s1, s2} induce a subgraph isomorphic to P3 + mK1, a contradiction.

Therefore |S| < m+ 2. But then the number of vertices in G is bounded by the Ramsey

number R(3,m+ 2), since G is K3-free and contains no independent set of size m+ 2.

Now suppose C has two consecutive strong vertices, say v1, v2. Since the graph

is (P3 + mK1)-free, every strong vertex has at most m − 1 non-neighbours in S, and

since the graph is K3-free, consecutive vertices of C cannot have common neighbours.

Therefore each of v1 and v2 has at most m− 1 neighbours in S. But then |S| < 2m− 1

and hence the number of vertices of G is bounded by the Ramsey number R(3, 2m− 1)

by the same argument as before.

Thus, if R has an odd cycle, then the number of vertices in G is bounded by a con-

stant. If R has no odd cycles, then G[R] is bipartite, and hence G is 3-colourable. Finding
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a maximum independent set in a (P3 +mK1)-free graph can be done in polynomial time,

so any (K3, P3 +mK1)-free graph is either bounded in size, or can be 3-coloured in this

way in polynomial time. Thus Vertex Colouring of (K3, P3 +mK1)-free graphs can

be solved in polynomial time. 2

We now present an alternative proof of the fact that every (K3, H)-free graph is

3-colourable which is much shorter than the original proof in [Randerath, 2004].

Theorem 92. Every (K3, H)-free graph is 3-colourable and a 3-colouring can be found

in polynomial time.

Proof. Let G be a (K3, H)-free graph and S be any maximal (with respect to set

inclusion) independent set in G. We assume that S admits no augmenting K1,2 (i.e. a

triple x, y, z such that x and y are non-adjacent vertices outside S with N(x) ∩ S =

N(y) ∩ S = {z}), since �nding an augmenting K1,2 can be done in polynomial time. (If

such an augmenting K1,2 exists, we can just replace S by {x, y}∪S \{z}, which increases

the size of S.)

Assume that the graph G[V \S] is not bipartite, and let vertices x1, . . . , xk induce

a cycle C of odd length k ≥ 5 in G[V \ S] . By maximality of S, every vertex outside S

has a neighbour in S.

Suppose that each vertex of C has exactly one neighbour in S, and let y2 ∈ S and

y3 ∈ S be the neighbours of x2 and x3, respectively. Then x1, x2, x3, x4, y2, y3 induce a

copy of the graph H (by lack of triangles and augmenting K1,2s). Thus, C must contain

vertices with at least two neighbours in S. Assume without loss of generality that x2 is

of this type. If C has two consecutive vertices each of which has at least two neighbours

in S, then an induced H can be easily found. Therefore, each of x1 and x3 has exactly

one neighbour in S. If y2 ∈ S is a neighbour of x2 and y3 ∈ S is a neighbour of x3,

then x4 is adjacent to y2, since otherwise x1, x2, y2, x3, y3, x4 would induce a copy of H.

Therefore, N(x2) ∩ S ⊆ N(x4) ∩ S, and by symmetry, N(x4) ∩ S ⊆ N(x2) ∩ S, i.e. x2

and x4 have the same neighbourhood in S. This in turn implies that x5 has exactly one

neighbour in S. Continuing inductively, we conclude that the even-indexed vertices of

C have the same neighbourhood in S consisting of at least two vertices, and each of the

odd-indexed vertices of C has exactly one neighbour in S. But then x1, x2, xk, xk−1, y1, yk

induce a copy of the graph H, where y1 ∈ S and yk ∈ S are the neighbours of x1 and

xk, respectively. 2

The Vertex Colouring problem is equivalent to the problem of �nding a par-

tition of the complement of G into minimum number of cliques, which we call Clique
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Partition. Vertex Colouring is known to be intractable not just from the classi-

cal, but also from the parameterized point of view (see e.g. [Downey and Fellows, 1999;

Flum and Grohe, 2006]). We prove that in the class of complements of line graphs of

triangle-free graphs, the Vertex Colouring problem is NP-hard but �xed-parameter

tractable.

Theorem 93. In the class of complements of line graphs of triangle-free graphs, Vertex

Colouring is NP-hard and �xed-parameter tractable.

Proof. The reduction is fromMinimum Vertex Cover in triangle-free graphs, which

is an NP-hard [Poljak, 1974] problem in this class and is �xed-parameter tractable (see

e.g. [Downey and Fellows, 1999; Flum and Grohe, 2006]). Let G be a triangle-free graph

and let H = L(G) be its line graph. It is not di�cult to see that every clique K in H

corresponds to a set of edges of G incident to the same vertex, which we denote v(K).

Let K1, . . . ,Kp be a set of cliques that partition V (H). Then {v(K1), . . . , v(Kp)} is a
vertex cover of G. This cover is minimum if and only if K1, . . . ,Kp is a minimum clique

partition of V (H). Since Minimum Vertex Cover is �xed-parameter tractable, we

conclude that Clique Partition is �xed-parameter tractable in the class of line graphs

of triangle-free graphs. Therefore, Vertex Colouring is �xed-parameter tractable in

the class of complements of line graphs of triangle-free graphs. By the same argument,

the problem is NP-hard in this class. 2

7.7 Conclusion

Graph Graph Name Complexity Reference

P6 P Theorem 72

K1,3 + P2 P Theorem 81

S1,1,3 P Theorem 81

3P2 P Theorem 90

Table 7.3: Forests F on six vertices, none of which is isolated, for which the complexity
of Vertex Colouring in the class Free(K3, F ) is contributed in this chapter.
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In this chapter we studied the complexity of the Vertex Colouring problem in

subclasses of triangle-free graphs obtained by forbidding forests and proved polynomial-

time solvability of the problem in many classes of this type. In particular our contribution,

combined with some previously known results listed in Table 7.1, provides a complete

description of the complexity status of the problem in subclasses of triangle-free graphs

obtained by forbidding a forest with at most 6 vertices (Tables 7.2 and 7.3 summarise

results of this type obtained in the present chapter). Very little is known about the

status of the problem in subclasses of triangle-free graphs de�ned by forbidding forests

with more than 6 vertices, and this creates a challenging research direction.

One more natural direction of research is investigation of the problem in extensions

of triangle-free graphs. Let us observe that all results on triangle-free graphs can be

extended, with no extra work, to so-called paw-free graphs, where a paw is the graph

obtained from a triangle by adding a pendant edge. This follows from two facts: �rst,

the problem can obviously be reduced to connected graphs, and second, according to

[Olariu, 1988], a connected paw-free graph is either complete multipartite (i.e. P 3-free),

in which case the problem is trivial, or triangle-free.

Further extensions of these classes make the problem much harder. For instance,

by adding a pendant edge to each vertex of a triangle, we obtain a graph known in

the literature as a net, and according to [Schindl, 2005] the problem is NP-hard even

for (net, 2K2)-free graphs and (net, 4K1)-free graphs. An interesting intermediate class

between paw-free and net-free graphs is the class of bull-free graphs, where a bull is the

graph obtained by adding a pendant edge to two vertices of a triangle. Recently, the class

of bull-free graphs received much attention in the literature (see e.g. [Chudnovsky, 2012;

Chudnovsky and Safra, 2008; de Figueiredo and Ma�ray, 2004; Lévêque and Ma�ray,

2008]). In particular, [Chudnovsky, 2012] provides a structural characterisation of bull-

free graphs which may be helpful in designing algorithms for various graph problems,

including the vertex colouring problem in subclasses of bull-free graphs.
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Chapter 8

Dynamic Edge-Choosability

8.1 Introduction

We de�ne a dynamic edge-colouring to be a (possibly improper) colouring of the edges

of a graph G such that the set of edges incident to any vertex of degree greater than one

contains at least two distinct colours (i.e. it is not monochromatic). Let the dynamic

edge-choice number ch∗2(G) denote the smallest integer k such that if every edge is given

a list of k colours then G has a dynamic edge-colouring with the additional property that

every edge is assigned a colour from its list. This parameter was introduced in [Esperet,

2010] to help construct counterexamples to a conjecture proposed in [Akbari et al., 2009].

Using a greedy algorithm, it can be shown that ch∗2(G) ≤ 3 for all graphs G

[Esperet, 2010]. Indeed, given a graph G and a list assignment of 3 colours to each edge

of G, we proceed as follows. Taking each edge uv in turn, pick a colour for uv that is

di�erent from one of the colours already-chosen for the edges incident with u and from

one of the colours already-chosen for the edges incident with v (if such already-coloured

edges exist, otherwise pick a colour for uv arbitrarily). Since the list for uv contains

three colours, it is always possible to do this and the resulting colouring has the property

that every vertex of degree greater than one has at least two distinct colours among the

edges incident with it. It is easy to see that ch∗2(G) is 0 or 1 if and only if the graph G

has maximum degree 0 or 1, respectively.

Characterising the graphs G with ch∗2(G) = 2 was an open problem [Esperet,

2010]. We solve this problem in the next section.
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8.2 Graphs with Dynamic Edge-choice Number 2

In this section we show that the graphs with dynamic edge-choice number at most two

are precisely those that have no component which is an odd cycle. To help us show this,

we start by introducing a useful graph transformation.

Let G be a graph and let X be a set of vertices in G. For each e ∈ E(G), let

L(e) ⊂ N be the list of colours assigned to the edge e. We de�ne the graph GX as

follows: Start with the graph G[V (G) \ X], then for each edge xy ∈ E(G) such that

x ∈ X, y ∈ V (G) \ X, create a new vertex xy whose only neighbour in GX is y (see

Figures 8.1 and 8.2 for examples). We associate these new edges xyy with the original

edges xy in the sense that we let L(xyy) = L(xy) and if we choose to colour the edge

xyy with a colour c in its list, we also implicitly do so for xy. (Similarly, we associate

the remaining edges in GX with the corresponding edges of G in the obvious way.)

yx

w

z

(a) G

yw

yz

w

z

(b) G{x,y}

Figure 8.1: An example of G and GX when X contains a vertex of degree 1

a b

c

x

y

z

(a) G

bx

cy
cz

x

y

z

(b) G{a,b,c}

Figure 8.2: An example of G and GX when X is a cycle

Note that, by construction, if G is connected and X is non-empty, then every

component of GX must contain a vertex of degree 1. If G[X] contains an edge then GX

contains less edges than G. Also, for any vertex y ∈ V (G) \X, the degree of y in G and
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GX are equal.

If we colour some (but not necessarily all) of the edges of a graph G, we say that

a vertex x in G has the dynamic property if it is incident to two edges which have been

coloured with di�erent colours or if it of degree at most 1.

We now prove a lemma that deals with a special case of the problem.

Lemma 94. Let G be a connected graph such that every edge e has a list of colours L(e)

of size 2 assigned to it. If G contains a vertex x of degree 1, then G has a dynamic

edge-colouring respecting the lists and this colouring can be found in O(n+m) time.

Proof. We prove the lemma by induction on the number of edges in G. Suppose that

for some k, the lemma holds for all connected graphs G on at most k edges containing a

vertex of degree 1.

Let G be a connected graph on k+1 edges, containing a vertex x of degree 1. Let

y be the unique neighbour of x in G and let X = {x, y}. Note that since G is connected,

every component of GX must contain a vertex of degree 1. Also, every component of GX

can have at most k edges, so we can �nd a dynamic edge-colouring of GX respecting the

lists (since the problem can be solved componentwise). Now, if we consider the associated

colouring on G, we �nd that every vertex in V (G) \X has the dynamic property.

If GX is edgeless, then G must consist of just the vertices x and y, in which case

colouring xy with either colour in its list yields a dynamic edge-colouring of G. If GX

contains an edge (see Figure 8.1 for an example), then by the connectivity of G, y must

have a neighbour z in G. This means that the vertex yz is present in GX and adjacent

to z in GX . This means that in the associated colouring of G, the edge yz must have

an assigned colour. We now colour the edge xy with a colour from its list, di�erent from

that of yz. This causes both x and y to have the dynamic property, yielding a dynamic

edge-colouring for the whole graph G.

By considering recursive transformations of the form G toGX and keeping track of

the vertices of degree 1 that are created, we can �nd a dynamic edge-colouring respecting

the lists in O(n+m) time. 2

We are now ready to characterise the graphs with dynamic edge-choice number 2.

Theorem 95. A graph G has ch∗2(G) ≤ 2 if and only if G has no component that is an

odd cycle. Furthermore, if every edge e in G is assigned a list L(e) ⊂ N of two colours,

then a dynamic edge-colouring respecting these lists can be found in O(n + m) time, if

such an edge-colouring exists.
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Proof. Suppose that each edge e of G is assigned a list L(e) of two colours. Since the

problem can be solved componentwise, we may assume that G is connected and contains

at least one edge. We may also assume that G contains no vertices of degree 1, otherwise

Lemma 94 can be applied.

Every vertex in G must be of degree at least 2, so G must contain a chordless cycle

C. Since G is connected, either GC is edgeless (in which case the graph G consists only

of the cycle C) or every component of GC must contain a vertex of degree 1 (see Figure

8.2 for an example). Therefore, by Lemma 94, we can �nd a dynamic edge-colouring of

GC which respects the lists. Note that in the partial edge-colouring of G associated with

this colouring, every vertex of V (G) \ C has the dynamic property in G.

Let e1, . . . , ek be the vertices in the cycle C in order. We now have three cases to

consider:

• If not all the edges of C have the same list of colours, say e1 has a colour c in its

list which is not in the list of ek. We can colour e1 with colour c and then for

i = 2, . . . , k colour ei with a colour di�erent from that of ei−1. Combining this

with the colouring for GC , we obtain a colouring for G in which every vertex has

the dynamic property.

• If all the edges of C have the same list and the cycle is of even length, colour the

edges of the cycle by alternating between the two colours. Again, combining this

with the colouring for GC ensures that every vertex in G has the dynamic property.

• If C is an odd cycle and every edge of C has the same list of colours. If GC is

edgeless, then C must contain all the vertices of G. In this case there is no solution

to the problem since it is impossible to colour the edges of C with alternating

colours. If GC contains an edge, then there must be an edge of G incident with

a vertex of C, say xy is incident with the edges e1 and ek (where x ∈ C, y 6∈ C).
In this case, we colour GC as before, so that every vertex outside of C has the

dynamic property in G. Let c1 be a colour from the list assigned to the edge e1

which is di�erent from the colour of xy. Now set e1 and ek to be of colour c1 and

then for i = 2, . . . , k − 1 colour ei to be di�erent from ei−1 (i.e. alternate colours).

This will ensure that all the vertices of C also have the dynamic property.

Thus the only conditions under which a (not necessarily connected) graph G can

fail to have a dynamic edge-colouring is in the case where it has a component which is

an odd cycle and where every edge in this cycle is assigned the same list of two colours.

To summarise, we can solve the problem by the following algorithm:

130



Algorithm CHOOSE(G)

Input: A graph G and lists L(e) ⊂ N of size 2, for every e ∈ E(G)

Output: A dynamic edge-colouring of G respecting the lists, or �Impossi-

ble� if no such edge-colouring exists

1. Find all components on at least 2 vertices in G

2. If G contains a component which is an odd cycle and every edge in this cycle has

the same list return �Impossible�

3. For every component H containing a vertex of degree 1, apply Lemma 94 to it

4. For every component H not containing a vertex of degree 1, �nd a chordless cycle

C in the component, apply Lemma 94 to HC and colour the edges of C so that all

the vertices of C have the dynamic property.

5. Return the resulting colouring

Note that a graph can be split into components in O(n + m) time, a chordless

cycle or a vertex of degree 1 can be found in O(n+m) time and Lemma 94 can be applied

in O(n+m) time. Thus the above algorithm runs in O(n+m) time. 2

8.3 Conclusion

In this chapter we fully characterised the graphs with every possible dynamic edge-choice

number and gave a linear-time algorithm to �nd a dynamic edge-colouring respecting the

lists assigned to each edge of the input graph when each such list is of size 2 (if such an

edge-colouring exists).
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Chapter 9

Conclusion

In this thesis we started with the questions �How far must we restrict the structure of

our graph to be able to solve our problem e�ciently?� We studied several problems

which are computationally hard to solve. We found various non-trivial classes of graphs

where these problems can be solved e�ciently and discussed various techniques (such as

augmenting graphs and modular decomposition) that can be used to achieve this goal.

It is often the case that as problems are solved, they suggest new problems that

could be investigated. I hope that the results in this thesis will stimulate more work

in the �eld of algorithmic graph theory. I conclude by listing the four open problems

mentioned in the thesis that I would most like to see solved:

1. The complexity of the Maximum Independent Set problem in P5-free graphs.

2. The complexity of the Stable-M3 problem.

3. The complexity the Efficient Edge Domination problem in S1,2,3-free graphs.

4. The parameterized complexity of the Weighted Independent Set problem in

C4-free graphs.
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