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Abstract

For a graph property X, let Xn be the number of graphs with vertex set {1, . . . , n}
having property X, also known as the speed of X. A property X is called factorial if
X is hereditary (i.e. closed under taking induced subgraphs) and nc1n ≤ Xn ≤ nc2n

for some positive constants c1 and c2. Hereditary properties with the speed slower
than factorial are surprisingly well structured. The situation with factorial properties
is more complicated and less explored. To better understand the structure of factorial
properties we look for minimal superfactorial ones. In [16], Spinrad showed that the

number of n-vertex chordal bipartite graphs is 2Θ(n log2 n), which means this class is
superfactorial. On the other hand, all subclasses of chordal bipartite graphs that
have been studied in the literature, such as forest, bipartite permutation, bipartite
distance-hereditary or convex graphs, are factorial. In the present paper, we study
more hereditary subclasses of chordal bipartite graphs and reveal both factorial and
superfactorial members in this family. The latter fact shows that the class of chordal
bipartite graphs is not a minimal superfactorial one. Finding minimal superfactorial
classes in this family remains a challenging open question.

Keywords: Hereditary class of graphs; Speed of hereditary properties; Factorial class;
Chordal bipartite graphs

1 Introduction

A graph property is an infinite class of graphs closed under isomorphism. Given a property
X, we write Xn for the number of graphs in X with vertex set {1, 2, . . . , n}. Following [4],
we call Xn the speed of the property X.

A property is hereditary if it is closed under taking induced subgraphs. Scheinerman
and Zito showed in [15] that for a hereditary property X the growth of Xn is far from arbi-
trary. In particular, the rates of the growth constitute discrete layers. In [15], the authors
distinguish five such layers: constant, polynomial, exponential, factorial and superfacto-
rial. Independently, similar results have been obtained by Alekseev in [2]. Moreover, the
latter paper reveals all minimal classes in the first four layers and provides the first three
layers with complete structural characterizations. The minimal layer for which no such
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characterization is known is the factorial one. A graph property X is said to be factorial
if the speed Xn satisfies the inequalities nc1n ≤ Xn ≤ nc2n for some positive constants c1

and c2.
The factorial layer contains many classes of theoretical or practical importance, such

as line graphs, interval graphs, permutation graphs, threshold graphs, forests, planar
graphs and, even more generally, all proper minor-closed graph classes [14], all classes
of graphs of bounded vertex degree, of bounded clique-width [3], etc. On the other hand,
except the definition, very little can be said about the factorial layer in general. There
is no membership test or common structural characterization for classes in this layer. To
simplify the study of this layer, in [11] the following conjecture was proposed.

Conjecture on factorial properties. A graph property X is factorial if and only if
the fastest of the following three properties is factorial: bipartite graphs in X, co-bipartite
graphs in X, split graphs in X.

We recall that a graph is bipartite if its vertices can be partitioned into at most two
independent sets. By a co-bipartite graph we mean the complement of a bipartite graph.
Finally, a split graph is a graph whose vertices can be partitioned into an independent set
and a clique.

To justify the above conjecture we observe that if in the text of the conjecture we
replace the word “factorial” by any of the lower layers (constant, polynomial or exponen-
tial), then the text becomes a valid statement. Also, the “only if” part of the conjecture is
true, because all minimal factorial classes are subclasses of bipartite, co-bipartite or split
graphs. There are 9 such classes of which three are subclasses of bipartite graphs, three
are subclasses of co-bipartite graphs and three are subclasses of split graphs. The three
minimal factorial classes of bipartite graphs are:

• P 1, the class of graphs of vertex degree at most 1,

• P 2, the class of “bipartite complements” of graphs in P 1, i.e. the class of bipartite
graphs in which every vertex has at most one non-neighbor in the opposite part,

• P 3, the class of 2K2-free bipartite graphs, also known as chain graphs for the property
that the neighborhoods of vertices in each part form a chain.

A graph property X is superfactorial if for every positive constants c and n0 there is
n ≥ n0 such that Xn ≥ ncn. If we knew all minimal superfactorial classes, proving or
disproving the above conjecture would be an easy task. However, none of such classes is
known. Under these circumstances, we look for “smallest” classes which are known to be
superfactorial. One of such classes is the class of chordal bipartite graphs.

A bipartite graph is chordal bipartite if it does not contain chordless cycles of length
more than 4. The class of chordal bipartite graphs contains several important sub-
classes, such as forests, chain graphs, bipartite permutation graphs [17], bipartite distance-
hereditary graphs [5], biconvex [1] and convex graphs. All these subclasses are known to
be factorial. On the other hand, as shown by Spinrad in [16], the speed of the class of

chordal bipartite graphs is 2Θ(n log2 n), which means that it is superfactorial. In the at-
tempt to determine whether it is a minimal superfactorial class, in the present paper we
study hereditary subclasses of chordal bipartite graphs. Every such a subclass can be
obtained by excluding from this class a set of chordal bipartite graphs, i.e. by forbidding
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a set of chordal bipartite graphs as induced subgraphs. One of our conclusions is that the
class of chordal bipartite graphs is not a minimal superfactorial class. We reveal a proper
superfactorial subclass of chordal bipartite graphs in Section 3. On the other hand, in Sec-
tions 4 and 5 we identify a number of new factorial members in the family of hereditary
subclasses of chordal bipartite graphs.

All preliminary information related to the topic of the paper, including notations and
an overview of previously known results, can be found in Section 2. In Section 6 we
conclude the paper with a list of open problems.

2 Preliminaries

All graphs in this paper are finite, undirected, without loops or multiple edges. For a
graph G we denote by V (G) and E(G) the vertex set and the edge set of G respectively.
As usual, Kn is a complete graph on n vertices, Kn,m is a complete bipartite graph with
parts of size n and m, and Cn a chordless cycle of length n. Given two graphs G and H,
we denote by G+H the disjoint union of G and H. In particular, nG is the disjoint union
of n copies of G.

The subgraph of G induced by a set of vertices U ⊆ V (G) is the graph with vertex set
U and two vertices being adjacent if and only if they are adjacent in G. The subgraph of
G induced by U will be denoted G[U ]. If a graph H is isomorphic to an induced subgraph
of G, we say that G contains H as an induced subgraph. Otherwise, we say that G is
H-free. For a set M , the class of all M -free graphs is denoted Free(M) and we call M
the set of forbidden induced subgraphs for this class. It is well-known that a class X of
graphs is hereditary if and only if X = Free(M) for some set M .

Every set X of graphs, hereditary or not, can be “approximated” by two hereditary
classes as follows: by bXc we denote the maximal hereditary subclass contained in X and
by dXe the minimal hereditary class containing X. It is not difficult to see that bXc and
dXe are uniquely defined and bXc ⊆ X ⊆ dXe with equalities holding if and only if X is
hereditary.

In this paper, the class of our interest is the class of chordal bipartite graphs, which is
precisely the class Free(C3, C5, C6, C7, . . .). Spinrad has shown in [16] that the number of

n-vertex graphs in this class is proportional to 2Θ(n log2 n), which means that this class is
superfactorial. As we mentioned in the introduction, this class contains several interesting
and important subclasses, such as forests, chain graphs, bipartite permutation graphs [17],
bipartite distance-hereditary graphs [5], biconvex [1] and convex graphs. All these classes
are factorial. This conclusion can be obtained either by direct counting (such as Cayley’s
formula for trees [6]) or can be derived from some more general results. For instance, in [12]
it was proved that every subclass of chordal bipartite graphs obtained by forbidding a forest
is at most factorial. This result alone implies that chain graphs, bipartite permutation
graphs, biconvex and convex graphs are factorial classes (a low bound follows from the
fact that each of them contains one of the minimal factorial classes). Also, in [3] it was
proved that

Theorem 1. Every class of bounded clique-width is at most factorial.

This implies, in particular, that forests and bipartite distance-hereditary graphs are
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factorial classes. Indeed, forests are graphs of tree-width 1, and every class of bounded tree-
width is also of bounded clique-width (see e.g. [7]). For the class of distance-hereditary
graphs an upper bound on the clique-width was shown in [8]. Observe that the class of
bipartite distance-hereditary graphs is precisely the class of domino-free chordal bipartite
graphs [5] (see Figure 2 for the domino). Some more classes of chordal bipartite graphs
of bounded clique-width can be found in [13].

The above discussion raises the question of whether the chordal bipartite graphs con-
stitute a minimal superfactorial hereditary class. In Section 3, we answer this question
negatively by identifying the first proper superfactorial subclass of chordal bipartite. In
the attempt to obtain more progress in this direction, in Sections 4 and 5 we study more
hereditary subclasses of chordal bipartite graphs. All of them turn out to be factorial.
Deriving a lower bound is an easy task, since the list of all minimal factorial classes is
finite. For an upper bound, we use Theorem 1 and the following helpful lemma.

Lemma 1. Let X be a hereditary class. If there is a constant d ∈ N and a hereditary class
Y with at most factorial speed of growth such that every graph G = (V,E) ∈ X contains a
non-empty subset A ⊆ V such that

• G[A] ∈ Y ,

• each vertex a ∈ A has either at most d neighbours or at most d non-neighbours in
V −A,

then X is at most factorial.

Proof. We prove the lemma by induction on n = |V (G)|. Let f(n) be the number of
n-vertex graphs in X and fA(n) the number of n-vertex graphs in X with a fixed set A
satisfying conditions of the lemma. The value of fA(n) can be upper bounded as follows:

fA(n) ≤ ncn1
1 f(n− n1)

(
2

(
n− n1

d

)
2d
)n1

,

where n1 = |A|, ncn1
1 is an upper bound on the number of different graphs induced by A

(c is a constant associated with the class Y ), f(n− n1) is the number of different graphs
induced by V − A and

(
2
(
n−n1

d

)
2d
)n1 is an upper bound on the number of ways to place

different edges between A and V −A. Therefore,

fA(n) ≤ ncn1f(n− n1)n(2d+1)n1 = ntn1f(n− n1), (1)

where t = c+2d+1. By induction f(n−n1) < (n−n1)h(n−n1), for some positive constant
h. In order to complete the proof we need to show that f(n) < nhn. Without loss of
generality, suppose that h > t + 2. Taking into account (1) we derive final conclusion:

f(n) ≤
n∑

n1=1

(
n

n1

)
ntn1(n− n1)h(n−n1) ≤

n∑
n1=1

n(t+1)n1+h(n−n1) <
n∑

n1=1

nhn−n1 < nhn.

As a special case of this lemma (with |A| = 1) we obtain the following corollary.

Corollary 1. Let X be a hereditary class. If there is a constant d such that every graph
G ∈ X has a vertex of degree at most d or at least n− d, then X is at most factorial.
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3 A superfactorial subclass of chordal bipartite graphs

In order to derive a lower bound on the number of n-vertex chordal bipartite graphs
Spinrad counted in [16] the number of bipartite adjacency matrices representing these
graphs, i.e. binary matrices whose rows correspond to one part of the graph and columns
correspond to the other part. In particular, he used in [16] the following construction.

Let M be a 2n by 2n binary matrix. Divide it into four n by n quadrants. Place an
arbitrary perfect matching in the upper left quadrant and a matrix with all values equal
1 in the lower right quadrant. Repeat this construction recursively within the other two
quadrants. Let us denote the set of matrices constructed in this way by M∗ and the set
of bipartite graphs represented by these matrices by Y∗.

Spinrad showed in [16] that the number of matrices in M∗, and therefore the number of

n-vertex graphs in Y∗, is Ω(2Ω(n log2 n)). He also showed that every graph in Y∗ is chordal
bipartite, which implies in particular a superfactorial lower bound for the number of n-
vertex chordal bipartite graphs. However, as we show below, not every chordal bipartite
graph belongs to dY∗e.

We denote by 2C4 the graph consisting of two disjoint copies of C4 and by C4−C4 the
graph obtained from 2C4 by adding exactly one edge connecting vertices from different
C4’s.

Lemma 2. Let G be a graph from Y∗ and C1 and C2 two vertex-disjoint induced C4 in
G. Then there are at least two edges between C1 and C2 in G.

Proof. We prove the lemma by induction on the number of vertices in G. Clearly the
lemma is true if G contains most 7 vertices.

Let A∪B be a bipartition of G. By definition, the vertices of G can be partitioned into
two parts A = A1 ∪ A2 and B = B1 ∪B2 in such a way that A1 ∪B1 induces a 1-regular
graph and A2 ∪B2 induces a complete bipartite graph.

The vertices of an arbitrary induced C4 in G can be arranged within the four subsets
of G in exactly one of the following ways:

(1) one vertex in A1, one in B1, one in A2 and one in B2,

(2) two vertices in A2 and two in B2,

(3) one vertex in A1, two in B2 and one in A2,

(4) one vertex in B1, two in A2 and one in B2,

(5) two vertices in A1 and two in B2,

(6) two vertices in B1 and two in A2.

If both C1 and C2 are located according to case 5 (or case 6), then the lemma holds by
induction. In all other cases it is easy to check the existence of at least two edges between
C1 and C2 with endpoints in A2 ∪B2.

Corollary 2. Every graph in Y∗ is (2C4, C4 − C4)-free.

Corollary 2 and the lower bound on the number of n-vertex graphs in Y∗ imply the
following conclusion.
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Theorem 2. The number of n-vertex (2C4, C4 − C4)-free chordal bipartite graphs is

Ω(2Ω(n log2 n)), i.e. the class of (2C4, C4 − C4)-free chordal bipartite graphs is superfac-
torial.

4 Excluding a unicyclic graph

As we mentioned in the introduction, excluding from the class of chordal bipartite graphs
a forest (i.e. a graph without cycles) results in a factorial class. The results of the previous
section show that excluding a graph with two disjoint cycles results in a class which is
superfactorial. In the present section, we deal with subclasses of chordal bipartite graphs
obtained by excluding a unicyclic graph, i.e. a graph with a single cycle.

The simplest unicyclic chordal bipartite graph is a C4. The class of C4-free chordal
bipartite graphs is precisely the class of forests. By Cayley’s formula [6], there are nn−2

labeled trees with n vertices, which gives a factorial upper bound on the number of labeled
forests. This conclusion can be easily extended to the class of banner-free chordal bipartite
graphs, where a banner is the graph obtained from a C4 by adding a pendant vertex, i.e.
a vertex with exactly one neighbour in the C4. Indeed, it is not difficult to see that a
connected banner-free graph containing a C4 is complete bipartite. In what follows, we
describe two extensions of banner-free chordal bipartite graphs and show that each of
them is factorial.

4.1 Q-free chordal bipartite graphs

By Q we denote the graph represented in Figure 1 (left) and by S1,2,3 the graph represented
in Figure 1 (right). The class of S1,2,3-free bipartite graphs was studied in [10], where it
was shown to be of bounded clique-width. Therefore, by Theorem 1, it is factorial. Now we
use this fact in order to show that the class of Q-free chordal bipartite graphs is factorial.

r
r

r
r r

r
r rrr rrr
�

�
@
@

Figure 1: The graphs Q (left) and S1,2,3 (right)

Lemma 3. If a Q-free chordal bipartite graph G contains a C4, then it contains a subset
U such that G[U ] is S1,2,3-free and every vertex of U has at most one neighbour in the rest
of the graph.

Proof. To find a subset U satisfying conditions of the lemma, let us start with a C4 and
extend it to a maximal complete bipartite subgraph H containing it. Denote the parts
(color classes) of H by A and B. Also, we denote by C the set of vertices of G outside
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H that have neighbours in B, and by D the set of vertices of G outside H that have
neighbours in A. We claim that

(1) each vertex of C has either exactly one neighbor or exactly one non-neighbour in B.
First, we observe that by definition every vertex of C must have both a neighbour and
a non-neighbour in B. Now assume that a vertex c ∈ C has at least two neighbours,
say b1, b2, and at least two non-neighbour, say b3, b4, in B. Then for any vertex
a ∈ A the subgraph induced by a, b1, b2, b3, b4, c is isomorphic to Q.

Similarly, each vertex of D has either exactly one neighbor or exactly one non-neighbour
in A. We will say that a vertex of C (D) is of type 1 if it has one neighbor in B (A) and
of type 2 if it has one non-neighbour in B (A). If |A| = |B| = 2, then every vertex of type
1 in C (D) is also of type 2. To avoid this ambiguity we will assume that every vertex of
type 2 has at least two neighbours in B (A). We claim that

(2) no vertex of B (A) has both a neighbour of type 1 and a neighbour of type 2 in C
(D). Assume by contradiction that a vertex b ∈ B has a neighbour c1 of type 1 and
a neighbour c2 of type 2 in C. Let b′ ∈ B be the non-neighbour of c2 and a, a′ any
two vertices in A. Then a, a′, b, b′, c1, c2 induce a Q in G.

(3) each vertex of B (A) has at most one neighbour of type 1 or at most one non-
neighbour of type 2 in C (D). Assume a vertex b ∈ B has two neighbours c1, c2 of
type 1 in C. Let b′ ∈ B be any vertex of B different form b and a, a′ any two vertices
in A. Then a, a′, b, b′, c1, c2 induce a Q in G. Now assume b has two non-neighbours
c1, c2 of type 2 in C. Let b′ ∈ B be any vertex of B different form b and a, a′ any
two vertices in A. Then a, a′, b, b′, c1, c2 induce a Q in G.

Assume that C has exactly one vertex of type 2. We denote this vertex by c and its
only non-neighbour in B by b. If in addition C has a vertex c′ of type 1, then by (2) b is
the only neighbour of c′ in B, and therefore, by (3), C has no other vertices of type 1, i.e.
C = {c, c′} and every vertex of B has at most one neighbour in C. If C has no vertices
of type 2, then also every vertex of B has at most one neighbour in C (by (3)). Similar
arguments apply to D. Therefore, if each of C and D contains at most one vertex of type
2, then every vertex of A ∪B has at most one neighbor in the rest of the graph, in which
case the lemma is true.

Now suppose that one of C,D has at least two vertices of type 2. Without loss of
generality let it be C. Then

(4) C has no vertices of type 1. Let c1, c2 be two vertices of type 2 in C, b1 ∈ B the
non-neighbour of c1 and b2 ∈ B the non-neighbour of c2. Assume by contradiction
that C contains a vertex c3 of type 1 with the only neighbour b3 in B. By (2) b3

must be equal both to b1 and b2, but then b1 = b2 contradicts (3).

(5) every vertex of C is adjacent to every vertex of D. To show this, assume a vertex
c ∈ C is not adjacent to a vertex d ∈ D. By (4) c is of type 2. We denote any two
neighbors of c in B by b1, b2 and its only non-neighbour in B by b3. Also, let a be
any neighbour of d in D. The vertices a, b1, b2, b3, c, d induce a Q in G.
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(6) every vertex of U = A∪B ∪C ∪D has at most one neighbour in V −U . Indeed, by
definition the vertices of A ∪ B have no neighbours in V − U . Suppose now that a
vertex c ∈ C has two neighbours x, y ∈ V − U . Then c, x, y together with any two
neighbours of c in B and any vertex of A induce a Q. Finally, let d be any vertex
of D with two neighbours x, y ∈ V − U . By assumption, C is not empty, say c ∈ C,
and by (5) d is adjacent to every vertex of C. Also we know that d must have at
least one neighbour a in A, and c has a neighbour b in B. Then a, b, c, d, x, y induce
a Q.

(7) if D has a vertex d of type 2, then D has no vertices of type 1. By contradiction,
let d′ be a vertex of type 1 in D. We denote by a, a′ any two neighbours of d in A,
and by c, c′ any two vertices of C. By (2) d′ is adjacent neither to a nor to a′, and
by (5) c, c′, d, d′ induced a C4. But then a, a′, c, c′, d, d′ induce a Q.

From the above discussion it follows that

• either all vertices of C and D are of type 2

• or all vertices of C are of type 2 and all vertices of D are of type 1.

In both cases, U = A ∪ B ∪ C ∪ D induces an S1,2,3-free bipartite graph (to better see
this, consider the bipartite complement of G[U ]). Together with (6) this completes the
proof.

Theorem 3. The class of Q-free chordal bipartite graphs is factorial.

Proof. Since the class of Q-free chordal bipartite graphs is an extension of forests, it is at
least factorial. For an upper bound, we apply Lemma 1 with Y being the union of the
class of forests and the class of S1,2,3-free bipartite graphs. Since both classes are factorial,
Y is factorial too. As to the set A satisfying conditions of Lemma 1, it is either V (G) if
G is C4-free or a set U defined in Lemma 3.

4.2 A-free chordal bipartite graphs

In this section, we show that the class of A-free chordal bipartite graphs is factorial, where
A is the graph represented in Figure 2. Again, this class contains all forests, and therefore,
it is at least factorial. To derive a factorial upper bound, we will prove a stronger result:
we will show that the clique-width of graphs in this class is bounded by a constant. To
this end, we need to fix some terminology.

Given a graph G, a subset U ⊂ V (G) and a vertex x 6∈ U , we say that x distinguishes
U if it has both a neighbour and a non-neighbour in U . A subset of vertices of G indistin-
guishable by the vertices outside the subset is called a module of G. A module is trivial if
it consists of a single vertex of G or includes all its vertices. Finally, G is said to be prime
if each of its modules is trivial. In particular, every prime graph with at least 3 vertices
is connected. In the class of A-free chordal bipartite graphs the structure of prime graphs
can be described as follows.

Lemma 4. Every prime A-free chordal bipartite graph with at least three vertices is either
a tree or a the domino.
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Figure 2: The graphs A (left) and domino (right)

Proof. Let G be a prime A-free chordal bipartite graph with at least three vertices. If G is
C4-free, then it is a tree, since it is a connected graph without cycles. Therefore, assume
G contains a C4. First, we extend this C4 to a maximal complete bipartite subgraph H
containing it. Let A and B be the two parts of H. Notice that |A| ≥ 2 and |B| ≥ 2,
since H contains a C4. Now we denote by C the set of vertices of G outside H that have
neighbours in B, and by D the set of vertices of G outside H that have neighbours in A.
Then we claim that

(1) C 6= ∅ and D 6= ∅. Indeed, if C is empty, then no vertex of G distinguishes B, in
which case B is a non-trivial module of G, contradicting primality of G. Similarly,
D is not empty.

(2) C∪D induces a complete bipartite graph in G. Indeed, assume by contradiction that
a vertex c ∈ C is not adjacent to a vertex d ∈ D. By definition of C, vertex c must
have a neighbour b1 in B, and by definition of H, it must have a non-neighbour b0

in B (since otherwise H is not maximal). Similarly, d must have a neighbour a1 and
a non-neighbour a0 in A. But then vertices a1, a0, b1, b0, c, d induce an A in G.

(3) V (G) = A ∪ B ∪ C ∪D. Indeed, if the vertex set of G contains more vertices, then
there must exist a vertex x that has a neighbour in C ∪ D. Assume x is adjacent
to a vertex d ∈ D. Let a be a neighbour of d in A. Also, let c be any vertex in C,
b1 ∈ B a neighbour and b0 ∈ B a non-neighbour of c. Now a, b1, b0, c, d, x induce an
A in G.

Now we look at the subgraph of G induced by A and D. Let x and y be two vertices of
D. We denote by X the set of neighbours of x in A and by Y the set of neighbours of y
in A. Observe that by definition of D both sets X and Y are non-empty. Then

(4) X 6= Y , since otherwise {x, y} is a non-trivial module of G.

(5) if the intersection X ∩ Y is not empty, then X ∪ Y = A. Assume X ∩ Y contains a
vertex a1, and suppose by contradiction that there is a vertex a0 ∈ A non-adjacent
both to x and y. Since X 6= Y , there must exist a vertex a2 ∈ A adjacent to one
of x, y and non-adjacent to the other. But now the vertices a0, a1, a2, x, y together
with any vertex of B induce an A in G.

(6) neither X ⊂ Y nor Y ⊂ X. Indeed, if, say, X ⊂ Y , then by the previous claim Y
must coincide with A, but this is a contradiction to the maximality of H.
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(7) if X intersects Y , then X intersects the neighbourhood of any other vertex of D in
A. Assume by contradiction that X intersects Y , but X is disjoint from Z, where Z
is the neighbourhood of a vertex z ∈ D in A. Then from (5) it follows that Z ⊂ Y ,
contradicting (6).

From (7) it follows that the neighbourhoods of vertices of D in the set A are either pairwise
intersecting or pairwise disjoint. Moreover, if in the graph induced by A∪D the neighbour-
hoods are pairwise intersecting, then according to (5) in the bipartite complement to this
graph the neighbourhoods are pairwise disjoint. Therefore, to understand the structure of
this graph, it is sufficient to analyze the case of pairwise disjoint neighbourhoods. Under
this assumption the neighbourhood of each vertex of D in the set A creates a module and
therefore it must consist of a single vertex.

Assume D contains two vertices, say x and y. We denote by a1 the only neighbour
of x in A and by a2 the only neighbour of y in A. Also, let c be an arbitrary vertex
of C and b is an arbitrary non-neighbour of c in B. Then a1, a2, b, c, x, y induce a C6,
which is not possible, since G is a chordal bipartite graph. Moreover, the same arguments
work if we consider the bipartite complement of the graph induced by A ∪ D, since the
vertices a1, a2, x, y induce a 2K2 and this graph is self-complementary in the bipartite
sense. Therefore, regardless of whether the neighbourhoods of vertices of D in the set
A are pairwise intersecting or pairwise disjoint, we conclude that |D| = 1. Similarly,
|C| = 1. This implies that |A| = |B| = 2, since otherwise G is not prime. But then the
set A ∪B ∪ C ∪D induces a domino.

Theorem 4. The clique-width of A-free chordal bipartite graphs is at most 6.

Proof. It is known (see e.g. [7]) that the clique-width of a graph G equals the maximum
of clique-width taken over all prime induced subgraphs of G. Also, the clique-width of
any tree is at most 3 (again see e.g. [7]) and the clique-width of a domino is at most 6,
since the clique-width cannot exceed the number of vertices. Hence the theorem.

Combining the above theorem with Theorem 1 we arrive at the final conclusion.

Corollary 3. The class of A-free chordal bipartite graphs is factorial.

5 Kp,p-free and more general chordal bipartite graphs

In this section, we show that for any positive constant p ≥ 2 the class of (Kp,p + K1)-
free chordal bipartite graphs is factorial. We start with the base case of Kp,p-free chordal
bipartite graphs and show a stronger result for them, namely, we prove that the tree-width
of Kp,p-free chordal bipartite graphs is bounded by a constant. To this end, let us first
introduce some terminology and auxiliary results related to the notion of tree-width.

Definition 1. A chordal graph (or triangulated graph) is a graph with no chordless cycle
of length ≥ 4.

Definition 2. A triangulation of a graph G is any chordal graph H containing G as a
spanning subgraph, i.e. V (H) = V (G) and E(H) ⊇ E(G).
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Clearly every graph has a triangulation, since every graph is a spanning subgraph of
a complete graph on the same vertex set. When determining the tree-width of a graph,
we are interested in triangulations with the smallest possible size of a maximum clique,
which is due to the following well-known lemma (see e.g. [9]).

Lemma 5. The tree-width of G is at most k if and only if there is a triangulation of G
with maximum clique size at most k + 1.

Let G = (X,Y,E) be a bipartite graph. We call the sets X and Y the color classes of
G. An arbitrary complete bipartite subgraph of G will be denoted M = (A,B), i.e. M is
the graph with vertex set A∪B and edge set E = {(a, b) | a ∈ A, b ∈ B}. We will assume,
by definition, that both A and B have size at least 2. If (A,B) is a complete bipartite
subgraph of G and H is a triangulation of G, then either H[A] or H[B] is a complete
subgraph of H.

Now let G be a chordal bipartite graph. Denote byM the set of all maximal complete
bipartite subgraphs (A,B) of G (with |A| ≥ 2 and |B| ≥ 2) and let C be a set containing
one of the color classes for each graph (A,B) ∈M.

We say that a graph M1 = (A1, B1) crosses a graph M2 = (A2, B2) from left (from
right) if A2 ⊆ A1 and B1 ⊆ B2 (A1 ⊆ A2 and B2 ⊆ B1). We also say that a set C is feasible
if for each pair M1 = (A1, B1),M2 = (A2, B2) ∈ M such that M1 = (A1, B1) crosses a
graph M2 = (A2, B2) from left, either A1 or B2 is not in C.

For a feasible set C, let HC denote the graph obtained from G by completing each
C ∈ C, i.e. by adding all possible edges connecting vertices of C. The following results
have been proved in [9].

Theorem 5. If C is a feasible set of color classes of a chordal bipartite graph G, then HC
is a chordal graph, i.e. a triangulation of G.

Theorem 6. Let K be a maximal clique in HC with |K| > 2. Let Kx = K ∩ X and
Ky = K ∩ Y . Assume |Kx| ≥ 2. Then one of the following two cases holds:

1. |Ky| = 1 and there exists a maximal complete bipartite subgraph (A,B) such that
Kx = A, y ∈ B and A ∈ C.

2. |Ky| > 1 and there exist maximal complete bipartite subgraphs (A1, B1) and (A2, B2),
with A1 ∈ C and B2 ∈ C such that Kx ⊆ A1 and Ky ⊆ B2.

5.1 Kp,p-free chordal bipartite graphs

Throughout this section G = (X,Y,E) is a Kp,p-free chordal bipartite graph. Therefore,
for any complete bipartite subgraph (A,B) of G we have either |A| < p or |B| < p. Our
goal is to prove that the tree-width of G is at most 2p − 3. We start with the following
lemma.

Lemma 6. For every Kp,p-free chordal bipartite graph G there exists a feasible set C such
that |C| < p for each C ∈ C.

Proof. Given the collection M = {M1, . . . ,Mm} of all maximal complete bipartite sub-
graphs of G, we construct the set C = {C(M1), . . . , C(Mm)} step by step starting with
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C0 = ∅. In the k-th step we add to Ck−1 a set C(Mk) ∈ {Ak, Bk} such that |C(Mk)| < p
and Ck = Ck−1∪{C(Mk)} satisfies the condition of feasibility. In the first step, we take the
smallest of A1 and B1. Since G is Kp,p-free, we have |C(M1)| < p, and since C1 consists
of a single set, it is obviously feasible.

Suppose we have successfully made k−1 steps. If Mk does not cross any of M1, . . . ,Mk−1,
then we simply include in Ck the smallest of Ak and Bk. Now suppose that Mk crosses
s ≥ 0 maximal complete bipartite graphs Ml1 , . . . ,Mls from left and t ≥ 0 maximal com-
plete bipartite graphs Mr1 , . . . ,Mrt from right, with s + t ≤ k − 1. That is, for any
i = 1, . . . , s and any j = 1, . . . , t:

Ali ⊆ Ak ⊆ Arj

Brj ⊆ Bk ⊆ Bli

(2)

From (2) it follows that Mrj cross Mli from left, which means that Arj and Bli cannot
both belong to Ck−1, since otherwise Ck−1 does not satisfy the condition of feasibility. This
leaves us with three possible situations:

1. There exists j such that Arj ∈ Ck−1 and for all i = 1, . . . , s, Bli /∈ Ck−1. In this case
we define C(Mk) = Ak. Since none of Bli is in Ck, the feasibility condition is not
violated, and since Ak ⊆ Arj and Arj ∈ Ck−1, we have |Ak| ≤ |Arj | < p.

2. There exists i such that Bli ∈ Ck−1 and for all j = 1, . . . , t, Arj /∈ Ck−1. In this case
we define C(Mk) = Bk. Since none of Arj is in Ck, the feasibility condition is not
violated, and since Bk ⊆ Bli and Bli ∈ Ck−1, we have |Bk| ≤ |Bli | < p.

3. For each i = 1, . . . , s and each j = 1, . . . , t, both Ali ∈ Ck−1 and Brj ∈ Ck−1. In
this case we define C(Mk) to be the smallest of Ak and Bk. Since none of Arj is in
Ck and none of Bli is in Ck, the feasibility condition is not violated, and since G is
Kp,p-free, we have |C(Mk)| < p.

By induction we conclude that the above procedure constructs a feasible set C such that
for every C(M) ∈ C, |C(M)| < p.

Lemma 7. The tree-width of Kp,p-free chordal bipartite graph is at most 2p− 3.

Proof. Let G be a Kp,p-free chordal bipartite graph and C be a feasible set for this graph
constructed according to Lemma 6, i.e. for each C ∈ C, |C| < p. By Theorem 5, G is
a subgraph of the chordal graph HC obtained from G by making each C ∈ C complete.
From Theorem 6 it follows that the size of a maximum clique in HC is at most 2p− 2. In
conjunction with Lemma 5 it means that the tree-width of G is at most 2p− 3.

Lemma 7 leads to a number of important conclusions. First of all, together with an
upper factorial bound on the number of graphs of bounded clique- (and therefore, tree-)
width and a lower factorial bound on the number of K2,2-free chordal bipartite graphs
(forests), Lemma 7 implies the following result.

Theorem 7. For every integer p ≥ 2, the class of Kp,p-free chordal bipartite graphs is
factorial.
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Also, since the tree-width of Kn,n is n, Lemma 7 provides a complete characterization
of hereditary classes of chordal bipartite graphs of bounded tree-width.

Theorem 8. A hereditary subclass X of chordal bipartite graphs is of bounded tree-width
if and only if the set of forbidden induced subgraphs for X contains a Kp,q for some positive
integers p, q.

5.2 (Kp,p +K1)-free chordal bipartite graphs

In this section, we extend the result of Theorem 7 from Kp,p to (Kp,p + K1)-free chordal
bipartite graphs. We need two auxiliary results. The first of them is an easy adaption of
Corollary 1 to the case of bipartite graphs.

Lemma 8. Let B be a hereditary class of bipartite graphs. If there is a constant d such
that every graph G ∈ B contains a vertex which has either at most d neighbours or at most
d non-neighbours in the opposite part of the graph, then B is at most factorial.

The proof of one more auxiliary result can be found in [18]. To make the paper
self-contained we present it here.

Lemma 9. Let U be a set with |U | = n and let A1, . . . , Aq be subsets of U such that

|A1| = · · · = |Aq| ≥
⌈

(2q−1−1)n+t
2q−1

⌉
, n > t, q ≥ 2. Then |

⋂q
i=1 Ai| ≥ t.

Proof. We prove the lemma by induction on q. For q = 2, we have |A1| = |A2| ≥
⌈
n+t

2

⌉
,

|A1∪A2| ≤ n. Therefore, |A1∩A2| = |A1|+ |A2|− |A1∪A2| ≥ 2
⌈
n+t

2

⌉
−n ≥ n+ t−n = t.

Now assume that the lemma is valid for any q − 1 subsets A1, . . . , Aq−1 of U . Denote

B = A1 ∩ . . .∩Aq−1. Since |Ai| ≥
⌈

(2q−1−1)n+t
2q−1

⌉
=

⌈
(2q−2−1)n+n+t

2
2q−2

⌉
, we have by induction

that |B| ≥ n+t
2 . Moreover, since |B| is an integer number, we have |B| ≥

⌈
n+t

2

⌉
. Now from

the inequality |Aq| ≥
⌈

(2q−1−1)n+t
2q−1

⌉
≥
⌈
n+t

2

⌉
we derive that |B ∩Aq| = |

⋂q
i=1 Ai| ≥ t.

Theorem 9. For any fixed integer p ≥ 2, the class of (Kp,p + K1)-free chordal bipartite
graphs is factorial.

Proof. For any p ≥ 2, the class of (Kp,p + O1)-free chordal bipartite graphs contains the
class of forests, which proves the lower bound.

For an upper bound, let s = p(2p−1 + 1) and assume that a (Kp,p + O1)-free chordal
bipartite graph G = (U, V,E) contains Ks,s as an induced subgraph. Partition U = A∪C
and V = B ∪D in such a way that A ∪B induces a Ks,s.

(1) Each vertex of C (of D) has at most p−1 non-neighbours in B (in A). If x ∈ C has
p non-neighbours b1, . . . , bp ∈ B, then x together with {b1, . . . , bp} and any p vertices
from A induce a Kp,p + K1, which is a contradiction. The second case is analogous.

(2) Each vertex of C (of D) has at most p−1 non-neighbours in D (in C). Assume that
x ∈ C has p non-neighbours in D which we denote by d1, . . . , dp. By (1) for each

i = 1, . . . , p, |N(di) ∩A| ≥ s− p + 1 ≥
⌈

(2p−1−1)s+p
2p−1

⌉
. This inequality together with

Lemma 9 imply that |
⋂p

i=1 (N(di) ∩A)| ≥ p. In other words, there exist p vertices
{a1, . . . , ap} ⊂ A such that the set {x, a1, . . . , ap, d1, . . . , dp} induces a Kp,p + O1.
This contradiction shows that x has at most p− 1 non-neighbours in D.

13



For a positive integer t, let us denote by Xt the class of Kt,t-free chordal bipartite graphs
and by Bt the set of all bipartite graphs containing a vertex with at most t neighbours
or at most t non-neighbours in the opposite part. Then the class of (Kp,p + K1)-free
chordal bipartite graphs is a subclass of Xs ∪ bB2p−2c. Indeed, if a (Kp,p + K1)-free
chordal bipartite graph G is not in Xs, then it contains a Ks,s, in which case G belongs
to B2p−2 by (1) and (2) (if the set C ∪D is non-empty, then any of its vertex has at most
2p− 2 non-neighbours in the opposite part; if C ∪D is empty, then each vertex of G has
0 ≤ 2p − 2 non-neighbours in the opposite part). Obviously, the same is true for every
induced subgraph of G, since deletion of a vertex from G cannot increase the number of
non-neighbours of the remaining vertices. Therefore, G belongs to bB2p−2c. The class Xs

is at most factorial by Theorem 7 and the class bB2p−2c is at most factorial by Lemma 8.
Therefore, the class of (Kp,p + K1)-free chordal bipartite graphs is at most factorial as
well.

6 Open problems

In this paper, we proved that the class of chordal bipartite graphs is not a minimal
superfactorial class and revealed a number of new factorial members in the family of
hereditary subclasses of chordal bipartite graphs. However, the most important question
of finding a minimal superfactorial class in this family remains open. At present, the only
candidate for this role is the class Y ∗ (more precisely, its hereditary closure dY ∗e) described
recursively in Section 3. Whether it is a minimal superfactorial class is a challenging
research problem. Also, it would be interesting to characterize this class in terms of
minimal forbidden induced subgraphs. Finally, identifying more (candidates for) minimal
superfactorial classes is a question of great importance and, apparently, of great difficulty,
since none has been identified so far.
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