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Abstract

The vertex colouring problem is known to be NP-complete in the class of
triangle-free graphs. Moreover, it remains NP-complete even if we additionally
exclude a graph F which is not a forest. We study the computational complexity
of the problem in (K3, F )-free graphs with F being a forest. From known results
it follows that for any forest F on 5 vertices, the vertex colouring problem is
polynomial-time solvable in the class of (K3, F )-free graphs. In the present paper,
we study the problem for (K3, F )-free graphs with F being a forest on 6 vertices.
It is know that in the case when F is the star K1,5, the problem is NP-complete.
We show that in nearly all other cases the problem is polynomial-time solvable.
The only exception is the class of (K3, 2P3)-free graphs for which the complexity
status of the problem remains an open question.

Keywords: Vertex colouring; Triangle-free graphs; Polynomial-time algorithm; Clique-
width

1 Introduction

A vertex colouring is an assignment of colours to the vertices of a graph G in such a way that
no edge connects two vertices of the same colour. The vertex colouring problem consists
in finding a vertex colouring with a minimum number of colours. This number is called the
chromatic number of G and is denoted by χ(G). If G admits a vertex colouring with at most
k colours, we say that G is k-colourable. The k-colourability problem consists in deciding
whether a graph is k-colourable.

From a computational point of view, vertex colouring and k-colourability (k ≥ 3)
are difficult problems, i.e. both of them are NP-complete. Moreover, the problems remain NP-
complete in many restricted graph families. For instance, 3-colourability is NP-complete for
planar graphs [10], 4-colourability is NP-complete for graphs containing no induced path
on 12 vertices [34], vertex colouring is NP-complete for line graphs [14]. On the other
hand, for graphs in some special classes, the problems can be solved in polynomial time. For
instance, 3-colourability is solvable for graphs containing no induced path on 6 vertices [28],
k-colourability (for any value of k) is solvable for graphs containing no induced path on 5

∗An extended abstract of this paper will appear in the Proceedings of the 36th International Work-
shop on Graph Theoretic Concepts in Computer Science, 2010. Research supported by the Centre for
Discrete Mathematics and Its Applications (DIMAP), University of Warwick.
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vertices [13], and vertex colouring (and therefore also k-colourability for any value of
k) is solvable for perfect graphs.

Recently, much attention has been paid to the complexity of the problems in graph classes
defined by forbidden induced subgraphs. Many results of this type were mentioned above,
some others can be found in [2, 5, 15, 16, 18, 19, 20, 25, 31]. In [19], the authors systematically
study vertex colouring on graph classes defined by a single forbidden induced subgraph,
and give a complete characterisation of those for which the problem is polynomial-time solvable
and those for which the problem is NP-complete. In particular, the problem is NP-complete for
K3-free graphs, i.e. for triangle-free graphs. Moreover, the problem is NP-complete for (K3, F )-
free graphs for any graph F which is not a forest [15, 19]. Here we study the computational
complexity of the problem in (K3, F )-free graphs with F being a forest. From known results it
follows that for any forest F on 5 vertices the vertex colouring problem is polynomial-time
solvable in the class of (K3, F )-free graphs. In the present paper, we show that the problem is
also polynomial-time solvable in many classes of (K3, F )-free graphs with F being a forest on
6 vertices.

2 Preliminaries

All graphs in this paper are finite, undirected, without loops or multiple edges. For any graph
theoretical terms not defined here, the reader is referred to [11]. For a graph G, let V (G) and
E(G) denote the vertex set and the edge set of G, respectively. If v is a vertex of G, then
N(v) denotes the neighbourhood of v (i.e. the set of vertices adjacent to v) and |N(v)| is the
degree of v. The subgraph of G induced by a set of vertices U ⊆ V (G) is denoted by G[U ].
For disjoint sets A,B ⊆ V (G), we say that A is complete to B if every vertex in A is adjacent
to every vertex in B, and that A is anticomplete to B if every vertex in A is non-adjacent to
every vertex in B.

As usual, Pn is a chordless path, Cn is a chordless cycle, and Kn is a complete graph on
n vertices. Also, Kn,m denotes a complete bipartite graph with parts of size n and m. By
Si,j,k we denote a tree with exactly three leaves, which are of distance i, j and k from the only
vertex of degree 3. In particular, S1,1,1 = K1,3 is known as a claw, and S1,2,2 is sometimes
denoted by E, since this graph can be drawn as the capital letter E. H denotes the graph that
can be drawn as the capital letter H, i.e. H has vertex set {v1, v2, v3, v4, v5, v6} and edge set
{v1v2, v2v3, v2v4, v4v5, v4v6}. The graph obtained from a K1,4 by subdividing exactly one edge
exactly once is called a cross. Given two graphs G and G′, we write G + G′ to denote the
disjoint union of G and G′. In particular, mG is the disjoint union of m copies of G.

The clique-width of a graph G is the minimum number of labels needed to construct G
using the following four operations:

(i) Creation of a new vertex v with label i (denoted by i(v)).

(ii) Disjoint union of two labelled graphs G and H (denoted by G ⊕ H).

(iii) Joining each vertex with label i to each vertex with label j (i 6= j, denoted by ηi,j).

(iv) Renaming label i to j (denoted by ρi→j).

Every graph can be defined by an algebraic expression using these four operations. For instance,
an induced path on five consecutive vertices a, b, c, d, e has clique-width equal to 3 and it can
be defined as follows:

η3,2(3(e) ⊕ ρ3→2(ρ2→1(η3,2(3(d) ⊕ ρ3→2(ρ2→1(η3,2(3(c) ⊕ η2,1(2(b) ⊕ 1(a)))))))))
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Graph Graph Name Complexity Reference
b

b

b

b

b b

Cross P [27, 29]

bb

b

bb

b S1,2,2 P [27, 29]

bb

bb

bb H P [27, 29] (see also Theorem 7)
b

b

b

b

b

b

K1,5 NPC [25]

Table 1: Forests F for which the complexity of vertex colouring in the class
Free(K3, F ) is known.

If a graph G does not contain induced subgraphs isomorphic to graphs from a set M , we
say that G is M -free. The class of all M -free graphs is denoted by Free(M), and M is called
the set of forbidden induced subgraphs for this class. Many graph classes that are important
from a practical or theoretical point of view can be described in terms of forbidden induced
subgraphs. For instance, by definition, forests form the class of graphs without cycles, and
due to König’s Theorem, bipartite graphs are graphs without odd cycles. Bipartite graphs
are precisely the 2-colourable graphs, and recognising 2-colourable graphs is a polynomially
solvable task. However, the recognition of k-colourable graphs is an NP-complete problem for
any k ≥ 3.

In the present paper, we study the computational complexity of the vertex colouring

problem in graph classes defined by two forbidden induced subgraphs one of which is a triangle,
i.e. a K3. The following theorem summarises known results of this type (see also Table 1) and
proves one more that can easily be derived from known results.

Theorem 1. Let F be a graph. If F contains a cycle or F = K1,5, then the vertex colouring

problem is NP-complete in the class Free(K3, F ). If F is isomorphic to S1,2,2,H, P6 or a cross,
then the problem is polynomial-time solvable in the class Free(K3, F ).

Proof. If F contains a cycle, then the NP-completeness of the problem follows from the fact
that it is NP-complete for graphs of girth at least k + 1, i.e. in the class Free(C3, C4, . . . , Ck),
for any fixed value of k (see e.g. [15, 19]). The NP-completeness of the problem in the class of
(K3,K1,5)-free graphs was shown in [25].

In [27, 29] Randerath et al. showed that every graph in the following three classes is 3-
colourable and that a 3-colouring can be found in polynomial time: Free(K3,H), Free(K3,
S1,2,2), Free(K3, cross). Therefore vertex colouring is polynomial-time solvable in these
three classes.

The conclusion that the problem is solvable for (K3, P6)-free graphs can be derived from
three facts. First, the clique-width of graphs in this class is bounded by a constant [4]. Second,
the chromatic number of graphs in this class is bounded by a constant (see e.g. [33]). Third,
for each fixed k, the k-colourability problem on graphs of bounded clique-width is solvable in
polynomial time [8].

Corollary 1. For each forest F on 5 vertices, the vertex colouring problem in the class
Free(K3, F ) is solvable in polynomial time.
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Proof. If F contains no edge, then the problem is trivial in the class of Free(K3, F ), since the
size of graphs in this class is bounded by a constant (by Ramsey’s theorem). If F contains at
least one edge, then it is an induced subgraph of at least one of the following graphs: H, S1,2,2,
cross, P6. Therefore Free(K3, F ) is a subclass of one the classes Free(K3,H), Free(K3, S1,2,2),
Free(K3, cross), Free(K3, P6), and thus the result follows from Theorem 1.

3 (K3, F )-free graphs with F containing an isolated vertex

In this section, we study graph classes Free(K3, F ) with F being a forest on 6 vertices, at least
one of which is isolated. Without loss of generality we may assume that F contains at least one
edge, since otherwise there are only finitely many graphs in the class Free(K3, F ) (by Ramsey’s
theorem). Throughout the section, an isolated vertex in F is denoted by v and the rest of the
graph is denoted by F0, i.e. F0 = F − v.

Lemma 1. Let F be a forest on 6 vertices with at least one edge and at least one isolated
vertex. Then the chromatic number of any graph G in the class Free(K3, F ) is at most 4 and
a 4-colouring can be found in polynomial time.

Proof. Suppose that F0 6= P3 + P2. Then it is not difficult to verify that F0 is an induced
subgraph of H, S1,2,2 or cross. Therefore the chromatic number of (K3, F0)-free graphs is at
most 3 (see [27, 29]). As a result, the chromatic number of any (K3, F )-free graph is at most
4. To see this, observe that for any vertex x, the graph G \N(x) is 3-colourable, while N(x) is
an independent set.

Now let F0 = P3 + P2. Let ab be an edge in a (K3, F )-free graph G. (If G has no edges,
the chromatic number is 1 and we are done.) We will show that G0 := G − (N(a) ∪ N(b)) is a
bipartite graph. Notice that since G is K3-free, both N(a) and N(b) induce an independent set.
We may assume that at least one of N(a)\{b}, N(b)\{a} is non-empty (otherwise each connected
component of G has at most two vertices and thus G is trivially 4-colourable). Obviously G0

is Ck-free for any odd k ≥ 7, since otherwise G contains a P3 + P2. Therefore we may assume
that G0 contains a C5 (otherwise G0 is bipartite). Let c ∈ N(b) \ {a}. Since G is triangle-free,
c can have at most two neighbours in the C5, and if it has two, they must be non-consecutive
vertices of the C5. Thus c is non-adjacent to at least three vertices in C5, say d, e, f , such that
G[d, e, f ] is isomorphic to P2 + K1. But now G[a, b, c, d, e, f ] is isomorphic to P3 + P2 + K1,
which is a forbidden graph for G. This contradiction shows that G0 has no odd cycles, i.e. G0

is a bipartite graph. If V 1
0 , V 2

0 are two colour classes of G0, then N(b) ∪ {a}, N(a) ∪ {b}, V 1
0 ,

V 2
0 are four colour classes of G.

In view of Lemma 1 and the polynomial-time solvability of 2-colourability, all we have
to do to solve the problem in the classes under consideration is to develop a tool for deciding
3-colourability in polynomial time. For this, we use a result from [31]. A set D ⊆ V (G) is
dominating in G if every vertex x ∈ V (G) \ D has at least one neighbour in D.

Lemma 2. ([31]) For a graph G = (V,E) with a dominating set D, we can decide 3-colourability
and determine a 3-colouring in time O(3|D||E|).

If a graph G ∈ Free(K3, F ) is F0-free, then the problem is solvable for G by Corollary 1.
If G has an induced F0, then the vertices of F0 form a dominating set in G. Summarising the
above discussion, we obtain the following result.

Theorem 2. Let F be a forest on 6 vertices with at least one isolated vertex. Then the vertex

colouring problem is polynomial-time solvable in the class Free(K3, F ).

All forests satisfying the conditions of Theorem 2 are listed in Table 2.
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Graph Graph Name

b

b

b

b

b

b

Empty
b

b

b

b

b

b

P2 + 4K1

b

b

b

b

b

b

P3 + 3K1

b

b

b

b

b

b

2P2 + 2K1
b

b

b

b

b

b

P3 + P2 + K1

b

b

b

b

b

b

K1,3 + 2K1

b

b

b

b

b

b

P4 + 2K1

b

b
b b b b S1,1,2 + K1

b

b

b

b

b

b

K1,4 + K1

b

b

b

b

b

b

P5 + K1

Table 2: Forests F for which polynomial time solvability of vertex colouring in the
class Free(K3, F ) follows from Theorem 2.
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4 (K3, P2 + P4)-free graphs

In this section we solve the vertex colouring problem in the class of (K3, P2 + P4)-free
graphs. First, we derive an easy upper bound on the chromatic number of graphs in this class.

Lemma 3. The chromatic number of any (K3, P2 + P4)-free graph G is at most 4 and a 4-
colouring of G can found in polynomial time.

Proof. If G has no edges, its chromatic number is 1, so we may assume that G has an edge ab.
Since G is K3-free, the vertices a, b together with their neighbours induce a bipartite graph.
And since G is (P2 +P4)-free, the set of vertices adjacent to neither a nor b induces a (K3, P4)-
free graph, i.e. a bipartite graph too. Therefore, the chromatic number of G is at most 4 and
a 4-colouring of G can found in polynomial time.

Lemma 3 reduces the vertex colouring problem in the class of (K3, P2 +P4)-free graphs
to 3-colourability. To solve the latter problem we prove the following two lemmas:

Lemma 4. Let G be a connected (K3, P2 + P4)-free graph containing an induced cycle C of
length seven. Then the vertices of C form a dominating set.

Proof. Let v1 − v2 − v3 − v4 − v5 − v6 − v7 − v1 be an induced cycle C of length seven in
G. Suppose that there exists a vertex v ∈ V (G) that is anticomplete to V (C). Since G is
connected, we may assume that v is adjacent to some vertex u which has a neighbour in V (C),
say v1. Then u must be nonadjacent to v2, v7, since G is K3-free. First, we claim that u has
a neighbour in {v4, v5}. Indeed, if u is anticomplete to {v4, v5}, then G[v, u, v7, v1, v4, v5] is
isomorphic to P2 + P4, a contradiction. By symmetry, we may assume that u is adjacent to
v4 (and thus nonadjacent to v3, v5, since G is K3-free). It follows that u must be adjacent to
v6, since otherwise G[v, u, v1, v2, v5, v6] would be isomorphic to P2 + P4. But now the vertices
v, u, v6, v7, v2, v3 induce a P2 + P4. This contradiction shows that every vertex of G in V (G) \
V (C) has a neighbour in V (C), and hence V (C) is a dominating set.

Lemma 5. The chromatic number of any (K3, P2 + P4, C7)-free graph G containing a P6 is at
most 3 and a 3-colouring of G can found in polynomial time.

Proof. Let Q denote the graph obtained from a C6 cycle by adding a vertex which has exactly
one neighbour on the cycle. Clearly, if a graph contains Q as an induced subgraph, it also
contains a P6. We split the proof into two cases.

Case 1: G contains an induced subgraph isomorphic to Q. Say Q is induced by vertices
a, b, c, d, e, f, g ∈ V (G), where a−b−c−d−e−f −a is a chordless cycle and the only neighbour
of g on the cycle is e. The vertices of G outside the set {a, b, c} can be partitioned into at most
5 non-empty subsets in the following way:

Va is the set of vertices adjacent to a and nonadjacent to b and c,

Vb and Vc are defined by analogy with Va,

Vac is the set of vertices adjacent to a and c and nonadjacent to b,

W is the set of vertices anticomplete to {a, b, c}.

Note that Va, Vb, Vc and Vac are independent sets, since G is K3-free. We will split W into
independent sets. Then we will investigate the possible edges between all these independent
sets and finally, we will show how to obtain a 3-colouring of G.
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(i) Every connected component of G[W ] is a complete bipartite graph, and exactly one of the
components contains an edge. First, every connected component in G[W ] is (K3, P4)-
free, which follows readily from the fact that G is (K3, P2 + P4)-free. Therefore, every
connected component of G[W ] is a complete bipartite graph. Next, assume there exist
two connected components in G[W ] each of which contains an edge, say a component
C1 contains an edge v1v2 and a component C2 contains an edge v3v4. Clearly v1 and v2

cannot both be adjacent to f , since G is K3-free. Also, they cannot both be nonadjacent
to f , since otherwise G[v1, v2, f, a, b, c] is isomorphic to P2 + P4. Therefore f has exactly
one neighbour in {v1, v2}, say v1, and analogously, f has exactly one neighbour in {v3, v4},
say v3. But then G[b, c, v2, v1, f, v3] is isomorphic to P2 + P4. This contradiction shows
that there exists at most one connected component in G[W ] which contains an edge.
Since eg is an edge in G[W ], it follows that there exists exactly one such component.

Let C1 be the unique connected component of G[W ] containing an edge. Let W1,W2 be
the vertex sets of C1 defining the bipartition with e ∈ W1, and let W0 = W \ (W1 ∪W2). Thus
W0 is a set of isolated vertices.

(ii) W1 is complete to Va ∪ Vc and W2 is anticomplete to Va ∪ Vc. Let u ∈ Va. From the
proof of (i) we know that for each edge xy in C1, exactly one of x, y is adjacent to u.
Suppose that vertex x ∈ W2 is adjacent to u (notice that u 6= f since otherwise G[e, u, x]
is isomorphic to K3, a contradiction). But then G[b, c, u, x, e, f ] is isomorphic to P2 +P4,
a contradiction. Thus W2 is anticomplete to Va and hence W1 is complete to Va. By
symmetry, W2 is anticomplete to Vc and W1 is complete to Vc.

(iii) Va is anticomplete to Vc, which follows from (ii) and the fact that G is K3-free.

(iv) W0 is anticomplete to Va ∪ Vc. If w ∈ W0 and u ∈ Va were adjacent, then these two
vertices, together with e, g, b, c would induce a P2 + P4. So W0 is anticomplete to Va. By
symmetry, W0 is also anticomplete to Vc.

(v) W2 and W0 have no common neighbours in Vac. Indeed, if a vertex v ∈ Vac is adjacent
to a vertex w ∈ W2 and a vertex u ∈ W0, then v is not adjacent to e (since G is K3-free)
and therefore G[e, f, u, v, c, b] is isomorphic to P2 + P4, a contradiction (notice that v is
nonadjacent to f , since G is K3-free).

Let X denote the subset of vertices of Vac that have neighbours in W2 and let Y denote
the remaining vertices of Vac. Notice that X is anticomplete to W1, since G is K3-free. From
the above discussion and the fact that G is K3-free, we now conclude that each of the following
three sets is independent: Va ∪ Vc ∪ W2 ∪ Y , W1 ∪ W0 ∪ X ∪ {b}, Vb ∪ {a, c}. Therefore G is
3-colourable and such a colouring can be found in polynomial time.

Case 2: G contains no induced subgraph isomorphic to Q. We assume that P6 is induced
in G, say by the vertices a, b, c, d, e, f with the edges {ab, bc, cd, de, ef}. The vertices outside
the set {b, c, d, e} can be partition into at most 8 non-empty sets as follows:

Vb is the set of vertices adjacent to b and nonadjacent to c, d, e,

Vc, Vd and Ve are defined by analogy with Vb,

Vbd is the set of vertices adjacent to b and d and nonadjacent to c and e,

Vce and Vbe are defined by analogy with Vbd,

W is the set of vertices anticomplete to {b, c, d, e}.
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(i) G[W ] contains no edge, since any two adjacent vertices in W together with b, c, d, e would
induce a P2 + P4.

Note that Vb, Vc, Vd, Ve, Vbd, Vce and Vbe are independent sets (since G is K3-free), as is
W . We will investigate the possible edges between these sets and then show how to
obtain a 3-colouring of G.

(ii) Vb is anticomplete to Ve. Note that a ∈ Vb and f ∈ Ve. We know af 6∈ G. Suppose a had
a neighbour u ∈ Ve \ {f}. Then G[a, b, c, d, e, u, f ] is isomorphic to Q, a contradiction.
Therefore a is anticomplete to Ve and by symmetry f is anticomplete to Vb. Now suppose
that there exist two adjacent vertices u ∈ Vb \ {a}, v ∈ Ve \ {f}. Then G[b, c, d, e, v, u, f ]
would be isomorphic to Q. This contradiction shows that Vb is anticomplete to Ve.

(iii) W is anticomplete to Vb∪Ve. For suppose there exists a vertex w ∈ W adjacent to a vertex
u ∈ Vb. Then w is adjacent to f , since otherwise G[e, f, w, u, b, c] would be isomorphic to
P2 + P4. But now w, u, b, c, d, e, f induce a cycle of length seven, a contradiction. Thus
W is anticomplete to Vb, and by symmetry, W is anticomplete to Ve.

(iv) W is anticomplete to Vc∪Vd. For suppose there exists a vertex w ∈ W adjacent to a vertex
u ∈ Vc. Then u is adjacent to f , since otherwise, the graph G[e, f, b, c, u, w] would be
isomorphic to P2 + P4, a contradiction. Furthermore, u is adjacent to a, since otherwise,
the graph G[a, b, e, f, u, w] would be isomorphic to P2 + P4, a contradiction. But now
G[w, u, a, b, d, e] is isomorphic to P2 +P4, a contradiction. Thus W is anticomplete to Vc,
and by symmetry W is also anticomplete to Vd.

(v) If W is anticomplete to Vbe, then G is 3-colourable. We obtain a feasible 3-colouring by
assigning colour 1 to the vertices of Vb ∪ Ve ∪ Vbe ∪ W ∪ {d}, colour 2 to the vertices of
{b} ∪ Vc ∪ Vce, and colour 3 to the vertices of {c, e} ∪ Vd ∪ Vbd.

It follows from (v) that we may assume that W is not anticomplete to Vbe, i.e. there exists
a vertex w ∈ W which has a neighbour u ∈ Vbe. We claim that u is complete to Vc∪Vd. Indeed,
suppose that u is nonadjacent to a vertex v ∈ Vc. Then v is adjacent to f , since otherwise, the
graph G[c, v, w, u, e, f ] is isomorphic to P2 + P4, a contradiction. But then G[v, f, e, u, b, c, w]
is isomorphic to Q, a contradiction. Thus u is complete to Vc, and by symmetry, u is complete
to Vd. Since G is K3-free, we conclude that Vc is anticomplete to Vd, and therefore, each of the
following three sets is independent: Vc ∪ Vd ∪ W ∪ {b, e}, Vb ∪ Vbd ∪ {c}, Ve ∪ Vce ∪ Vbe ∪ {d}.
Therefore, G is 3-colourable.

Now we combine Lemmas 3, 4 and 5 to derive the main result of this section.

Theorem 3. The vertex colouring problem can be solved for (K3, P2 + P4)-free graphs in
polynomial time.

Proof. By Lemmas 2 and 4, the 3-colourability problem can be solved in polynomial time
for any connected (K3, P2 + P4)-free graph G containing a C7. If G is C7-free and contains
a P6, 3-colourability is solvable in polynomial time for G by Lemma 5. If G is P6-free,
3-colourability is polynomial-time solvable for G according to [28] (or using Theorem 1 and
the fact that G is K3-free). Finally, if G is not 3-colourable, then by Lemma 3 it is 4-colourable
and a 4-colouring can be found in polynomial time.
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5 Graphs of bounded clique-width

In Section 2, we mentioned that the polynomial-time solvability of the vertex colouring

problem in the class of (K3, P6)-free graphs follows from the facts that both the clique-width
and the chromatic number of graphs in this class are bounded by a constant. In the present
section we use that same idea to solve the problem in the following two classes: Free(K3, S1,1,3)
and Free(K3,K1,3 + K2).

It is known that if G is an F -free graph, where F is a subdivision of a star K1,n, then the
chromatic number of G is bounded by a function of its clique number (see e.g. [33]). Therefore
the chromatic number of (K3, S1,1,3)-free graphs and (K3,K1,3 + K2)-free graphs is bounded
by a constant. This means that in order to prove polynomial-time solvability of the vertex

colouring problem in the classes Free(K3, S1,1,3) and Free(K3,K1,3 + K2), all we have to
do is to show that the clique-width of graphs in these classes is bounded. In our proofs we use
the following helpful facts:

Fact 1: The clique-width of graphs with vertex degree at most 2 is bounded by 4 (see e.g. [9]).

Fact 2: The clique-width of S1,1,3-free bipartite graphs [22] and (K1,3 +K2)-free bipartite graphs
[24] is bounded by a constant.

Fact 3: For a constant k and a class of graphs X, let X[k] denote the class of graphs obtained
from graphs in X by deleting at most k vertices. Then the clique-width of graphs in X

is bounded if and only if the clique-width of graphs in X[k] is bounded [23].

Fact 4: For a graph G, the subgraph complementation is the operation that consists of com-
plementing the edges in an induced subgraph of G. Also, given two disjoint subsets of
vertices in G, the bipartite subgraph complementation is the operation which consists of
complementing the edges between the subsets. For a constant k and a class of graphs X,
let X(k) be the class of graphs obtained from graphs in X by applying at most k sub-
graph complementations or bipartite subgraph complementations. Then the clique-width
of graphs in X(k) is bounded if and only if the clique-width of graphs in X is bounded
[17].

Fact 5: The clique-width of graphs in a hereditary class X is bounded if and only if it is bounded
for connected graphs in X (see e.g. [9]).

Facts 2 and 5 allow us to reduce the problem to connected non-bipartite graphs in the
classes Free(K3, S1,1,3) and Free(K3,K1,2 +K2), i.e. to connected graphs in these classes that
contain an odd induced cycle of length at least five.

Lemma 6. Let G be a connected (K3, S1,1,3)-free graph containing an odd induced cycle C of
length at least 7. Then G = C.

Proof. Let C = v1−v2− . . .−v2k −v2k+1−v1 be an induced cycle in G, of length 2k+1, k ≥ 3.
Suppose that there exists a vertex v ∈ V (G)\V (C), which is adjacent to a vertex of C. Without
loss of generality, we may assume that v is adjacent to v1. We claim that v is non-adjacent
to v4. Otherwise, since G is K3-free, it follows that v is non-adjacent to v2k+1, v2, v3, v5. But
now G[v4, v3, v5, v, v1, v2k+1] is isomorphic to S1,1,3, a contradiction. Thus v is non-adjacent
to v4. This implies that v is adjacent to v3, since otherwise G[v, v2k+1, v1, v2, v3, v4] would be
isomorphic to S1,1,3. Now repeating the same argument with v3 playing the role of v1, we
conclude that v is adjacent to v5. But now G[v1, v2, v2k+1, v, v5, v4] is isomorphic to S1,1,3. This
contradiction shows that G = C.
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Lemma 7. Let G be a connected (K3,K1,3 + K2)-free graph containing an odd induced cycle
C2k+1, k ≥ 3. If k ≥ 4 then G = C2k+1 and if k = 3 then |V (G)| ≤ 28.

Proof. Let C = v1 − v2 − . . . − v2k − v2k+1 − v1 be an induced cycle of length 2k + 1 in G.
First consider the case where k ≥ 4. Suppose that there exists a vertex v ∈ V (G) \ V (C)
which is adjacent to some vertex of C, say v1. Since G is K3-free, it follows that v is non-
adjacent to v2k+1, v2. We claim that for every pair of vertices {vi, vi+1}, with i = 4, 5, . . . , 2k−
2, vertex v is adjacent to exactly one of vi, vi+1. Clearly, since G is K3-free, v has a non-
neighbour in {vi, vi+1}. If v has no neighbours in {vi, vi+1}, then G[v1, v2, v, v2k+1, vi, vi+1]
is isomorphic to K1,3 + K2, a contradiction. Now suppose that v is adjacent to v4. Then it
follows that v is complete to {v4, v6, . . . , v2k−2} and anticomplete to {v5, v7, . . . , v2k−1}. But
then G[v2k−2, v, v2k−3, v2k−1, v2, v3] is isomorphic to K1,3 + K2, a contradiction. Thus we may
assume that v is adjacent to v5. This implies that v is complete to {v5, v7, . . . , v2k−1} and
anticomplete to {v4, v6, . . . , v2k−2}. It follows that v is non-adjacent to v2k, since G is K3-free.
But now G[v5, vv, v6, v, v2k, v2k+1] is isomorphic to K1,3 + K2. This contradiction shows that
G = C.

Now consider the case where k = 3 and let v ∈ V (G) \ V (C) be adjacent to v1. As before,
v has exactly one neighbour in {v4, v5}. By symmetry, we may assume that v is adjacent to
v4. Hence v has no neighbours in {v2, v3, v5, v7}. Finally, observe that v is non-adjacent to v6,
since otherwise G[v6, v5, v7, v, v2, v3] would be isomorphic to K1,3 + K2. Therefore we conclude
that each vertex v ∈ V (G)\V (C) that is adjacent to some vertex vi ∈ V (C), is either complete
to {vi, vi+3} and anticomplete to V (C) \ {vi, vi+3}, or complete to {vi, vi+4} and anticomplete
to V (C) \ {vi, vi+4} (here subscripts are taken modulo 7).

Let Uj denote the set of vertices at distance j from the cycle. We claim that:

• |U1| ≤ 7. Indeed, if |U1| > 7, then there exist two vertices z, z′ ∈ U1 that are complete
to {vi, vi+3} for some value of i (and thus anticomplete to V (C) \ {vi, vi+3}). Since G is
K3-free, z, z′ must be non-adjacent. But then G[vi, z, z′, vi+1, vi+4, vi+5] is isomorphic to
K1,3 + K2, a contradiction.

• each vertex of U1 has at most one neighbour in U2. Indeed, suppose a vertex x ∈ U1 has
two neighbours y, z ∈ U2, and without loss of generality let x be complete to {vi, vi+3}
(and thus anticomplete to V (C) \ {vi, vi+3}). Since G is K3-free, it follows that y, z are
non-adjacent. But then G[x, y, z, vi, vi+4, vi+5] is isomorphic to K1,3+K2, a contradiction.

• each vertex of U2 has at most one neighbour in U3, which can be proved by analogy with
the previous claim.

• for each i ≥ 4, Ui is empty. Indeed, assume without loss of generality that U4 6= ∅ and
let u4, u3, u2, u1 be a path from U4 to C with uj ∈ Uj and u1 being adjacent to vi. Then
G[vi, vi−1, vi+1, u1, u3, u4] is isomorphic to K1,3 + K2, a contradiction.

From the above claims we conclude that V (G) = V (C) ∪ U1 ∪ U2 ∪ U3, |U3| ≤ |U2| ≤ |U1| ≤
7 = |V (C)|, and therefore |V (G)| ≤ 28.

Thus Lemmas 6 and 7 and Fact 2 further reduce the problem to graphs containing a C5.

Lemma 8. If G is a connected (K3, S1,1,3)-free graph containing a C5, then the clique-width
of G is bounded by a constant.

Proof. Let G be a connected (K3, S1,1,3)-free graph and let C = v1 − v2 − v3 − v4 − v5 − v1 be
an induced cycle of length five in G. If G = C then the clique-width of G is at most 4 (Fact
1). Therefore we may assume that there exists at least one vertex v ∈ V (G) \V (C). Since G is
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K3-free, v can be adjacent to at most two vertices of C, and if v has two neighbours in C, they
must be non-consecutive vertices of the cycle. We denote the set of vertices in V (G) \ V (C)
that have exactly i neighbours in C by Ni, i ∈ {0, 1, 2}. Also, for i = 1, . . . , 5, we let Vi denote
the set of vertices in N2 adjacent to vi−1, vi+1 ∈ V (C) (throughout the proof subscripts i are
taken modulo 5). We call two different sets Vi and Vj consecutive if vi and vj are consecutive
vertices of C, and opposite otherwise. Finally, we call Vi large if |Vi| ≥ 2, and small otherwise.
The proof of the lemma will be given through a series of claims.

(1) Each Vi is an independent set. This immediately follows from the fact that G is K3-free.

(2) N0 is an independent set. Indeed, assume xy is an edge connecting two vertices x, y ∈ N0,
and let, without loss of generality, y be adjacent to a vertex z ∈ N1 ∪ N2. Assume z is
adjacent to vi ∈ V (C). Since G is K3-free, z is non-adjacent to x, vi−1, vi+1. But then
G[vi, vi+1, vi−1, z, y, x] is isomorphic to S1,1,3, a contradiction.

(3) Any vertex x ∈ N1 ∪ N2 has at most one neighbour in N0. Suppose x ∈ N1 ∪ N2 is
adjacent to z, z′ ∈ N0, and let vi ∈ V (C) be a neighbour of x. Since G is K3-free, it
follows that x is non-adjacent to vi−1, vi+1. Furthermore, x is adjacent to at most one
of vi−2, vi+2. By symmetry we may assume that x is non-adjacent to vi−2. But now
G[x, z, z′, vi, vi−1, vi−2] is isomorphic to S1,1,3, a contradiction.

(4) |N1| ≤ 5. Indeed, if there are two vertices x, x′ ∈ N1 which are adjacent to the same
vertex vi ∈ V (C), then G[x, x′, vi, vi+1, vi+2, vi+3] is isomorphic to S1,1,3, a contradiction.

(5) If Vi and Vj are opposite sets, then no vertex of Vi is adjacent to a vertex of Vj. This
immediately follows from the fact that G is K3-free.

(6) If Vi and Vj are consecutive, then every vertex x ∈ Vi has at most one non-neighbour in
Vj. Suppose x ∈ Vi has two non-neighbours y, y′ ∈ Vj . By symmetry, we may assume
that j = i+1. But now G[vi−3, y, y′, vi−2, vi−1, x] is isomorphic to S1,1,3, a contradiction.

(7) If Vi and Vj are two opposite large sets, then no vertex in N0 has a neighbour in Vi ∪ Vj .
Without loss of generality assume that i = 1 and j = 4, and suppose for a contradiction
that a vertex x ∈ N0 has a neighbour y ∈ V1. If x is non-adjacent to some vertex z ∈ V4,
then G[v3, v4, z, v2, y, x] is isomorphic to S1,1,3, a contradiction. Therefore x is complete
to V4. But now G[x, z, z′, y, v2, v1] with z, z′ ∈ V4 is isomorphic to S1,1,3, a contradiction.

Since G is connected and N0 is an independent set, every vertex of N0 has a neighbour
in N1 ∪ N2. Let V0 be the set of vertices in N0, all of whose neighbours belong to the large
sets Vi. Let G0 be the subgraph of G induced by V0 and the large sets. From Claims (2),(3)
and (4), it follows that at most 25 vertices of G do not belong to G0. Therefore, by Fact 3,
the clique-width of G is bounded if and only if it is bounded for G0. We may assume that G

has at least one large set, since otherwise G0 is empty. We will show that G0 has bounded
clique-width by examining all possible combinations of large sets.

Case 1: Assume that for every large set Vi there is an opposite large set Vj . Then it follows
from Claim (7) that V0 = ∅. In order to see that G0 has bounded clique-width, we complement
the edges between every pair of consecutive large sets. By Claim (6), the resulting graph has
maximum degree at most 2. From Fact 1 it follows that this graph is of bounded clique-width,
and therefore, applying Fact 4, G0 has bounded clique-width.

Case 1 allows us to assume that G contains a large set such that the opposite sets are small.
Without loss of generality we let V1 be large, and V3 and V4 be small. The rest of the proof is
based on the analysis of the size of the sets V2 and V5.
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Case 2: V2 and V5 are large. Then, by Claims (1), (2), (5), and (7), G0 is a bipartite graph
with bipartition (V1, V2 ∪ V5 ∪ V0). Therefore by Fact 2, G0 has bounded clique-width.

Case 3: V2 and V5 are small. Then G0 is a bipartite graph with bipartition (V1, V0), and
therefore, by Fact 2, G0 has bounded clique-width.

Case 4: V2 is large and V5 is small, i.e. G0 is induced by V0 ∪ V1 ∪ V2. Consider a vertex
x ∈ V0 that has a neighbour y ∈ V1 and a neighbour z ∈ V2. Then y and z are non-adjacent
(since G is K3-free) and therefore, by Claim (6), y is complete to V2 \ {z} and z is complete to
V1 \ {y}. From the K3-freeness of G it follows that x is anticomplete to (V1 ∪ V2) \ {y, z}.

Let V ′
0 denote the vertices of V0 that have neighbours both in V1 and V2, and let V ′

i (i = 1, 2)
denote the vertices of Vi that have neighbours in V ′

0 . Also, let V ′′
i = Vi − V ′

i for i = 0, 1, 2, and
G′

0 = G0[V
′
0 ∪ V ′

1 ∪ V ′
2 ], G′′

0 = G0[V
′′
0 ∪ V ′′

1 ∪ V ′′
2 ].

By Claim (3), V ′′
0 is anticomplete to V ′

1 ∪ V ′
2 . Also, it follows from the above discussion

that V ′
0 is anticomplete to V ′′

1 ∪ V ′′
2 , that V ′

1 is complete to V ′′
2 , and that V ′

2 is complete to
V ′′

1 . Therefore by complementing the edges between V ′
1 and V ′′

2 , and between V ′
2 and V ′′

1 ,
we disconnect G′

0 from G′′
0 . The graph G′′

0 is a bipartite graph, since every vertex of V ′′
0

has neighbours either in V ′′
1 or in V ′′

2 but not in both. Thus it follows from Fact 2 that G′′
0

has bounded clique-width. To see that G′
0 has bounded clique-width, we complement the

edges between V ′
1 and V ′

2 . This operation transforms G′
0 into a collection of disjoint triangles.

Therefore the clique-width of G′
0 is bounded. Now it follows from Fact 4 that G0 has bounded

clique-width.

Similarly to Lemma 8, one can prove the following result.

Lemma 9. If G is a connected (K3,K1,3+K2)-free graph containing a C5, then the clique-width
of G is bounded by a constant.

Proof. The proof is similar to the proof of Lemma 8. Let G be a connected (K3,K1,3 +K2)-free
graph and let C = v1 − v2 − v3 − v4 − v5 − v1 be an induced cycle of length five in G. If G = C

then the clique-width of G is at most 4 (Fact 1). Therefore we may assume that there exists at
least one vertex v ∈ V (G)\V (C). Since G is K3-free, v can be adjacent to at most two vertices
in C, and if v has two neighbours in C, they must be non-consecutive vertices of C. We denote
the set of vertices in V (G) \ V (C) that have exactly i neighbours in C by Ni, i ∈ {0, 1, 2}.
Also, for i = 1, . . . , 5, we let Vi denote the set of vertices in N2 adjacent to vi−1, vi+1 ∈ V (C)
(throughout the proof subscripts i are taken modulo 5). We call two different sets Vi and Vj

consecutive if vi and vj are consecutive vertices of C, and opposite otherwise. Finally, we call
Vi large if |Vi| ≥ 7, and small otherwise. The proof of the lemma will be given through a series
of claims .

(1) Each Vi is an independent set. This immediately follows from the fact that G is K3-free.

(2) |N1| ≤ 10. Indeed, if there are three vertices x, x′, x′′ ∈ N1 which are adjacent to a
same vertex vi ∈ V (C), then G[vi, x, x′, x′′, vi+2, vi+3] is isomorphic to K1,3 + K2, a
contradiction (notice that x, x′, x′′ are pairwise non-adjacent, since G is K3-free).

(3) If Vi and Vj are opposite sets, then no vertex of Vi is adjacent to a vertex of Vj. This
immediately follows from the fact that G is K3-free.

(4) If Vi and Vj are consecutive, then every vertex of Vi has at most two non-neighbours in
Vj. By symmetry, we may assume j = i + 1. Suppose x ∈ Vi has three non-neighbours
y, y′, y′′ ∈ Vj . Then G[vi+2, y, y′, y′′, vi−1, x] is isomorphic to K1,3 + K2, a contradiction.
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(5) Each vertex w ∈ N0 is adjacent to at most two vertices in a set Vi. Indeed, if w ∈ N0 were
adjacent to three vertices z, z′, z′′ ∈ Vi, then G[w, z, z′, z′′, vi+2, vi+3] would be isomorphic
to K1,3 + K2, a contradiction.

(6) N0 induces a graph of vertex degree at most two. Moreover, if there exists at least one
large set, then N0 is an independent set. If a vertex w ∈ N0 has three neighbours
z, z′, z′′ ∈ N0, then G[w, z, z′, z′′, v1, v2] is isomorphic to K1,3 + K2. This contradiction
proves the first part of the claim. To prove the second part, assume Vi is a large set
and suppose that two vertices w,w′ ∈ N0 are adjacent. Since Vi is large, it follows from
Claim (5) that there exist at least three vertices z, z′, z′′ ∈ Vi which are anticomplete to
{w,w′}. But now G[vi−1, z, z′, z′′, w, w′] is isomorphic to K1,3 + K2, a contradiction.

(7) If Vi and Vj are two opposite large sets, then no vertex in N0 has a neighbour in Vi ∪ Vj .
Without loss of generality, assume that i = 1 and j = 4, and suppose for contradiction,
that a vertex w ∈ N0 has a neighbour y ∈ V1. Since V4 is large and since w is adjacent to
at most two vertices in V4 (Claim (5)), it follows that w has two non-neighbours z, z′ ∈ V4.
But now G[v3, v4, z, z′, w, y] is isomorphic to K1,3 + K2, a contradiction.

(8) Any vertex x ∈ N1 ∪ N2 has at most two neighbours in N0. Indeed, for any vertex
x ∈ N1 ∪ N2 there exist at least two consecutive vertices of C non-adjacent to x. These
two vertices together with x and any three neighbours of x in N0 would induce a K1,3+K2.

From Claim (6) and Fact 1 we know that the clique-width of G[N0] is at most 4. Therefore,
if all sets Vi are small, then G has bounded clique-width, which follows from Claim (2) and
Fact 3.

From now on, we assume that there exists at least one large set Vi. This implies that N0

is an independent set (Claim (6)). Since G is connected, every vertex of N0 has a neighbour in
N1 ∪ N2. Let V0 be the set of vertices in N0, all of whose neighbours belong to the large sets
Vi. Let G0 be the subgraph of G induced by V0 and the large sets. From Claims (2) and (8),
it follows that only finitely many vertices of G do not belong to G0. Therefore, by Fact 3, the
clique-width of G is bounded if and only if it is bounded for G0. We will show that G0 has
bounded clique-width by examining all possible combinations of large sets.

Case 1: Assume that for every large set Vi there is an opposite large set Vj . Then it follows
from Claim (7) that V0 = ∅. Let Vi−1 and Vi+1 be large sets. We claim that every vertex x ∈ Vi

is complete to Vi−1 ∪ Vi+1. For suppose not: let y ∈ Vi+1 be a non-neighbour of x. Since Vi−1

is large, it follows from Claim (4) that x has at least two neighbours z, z′ ∈ Vi−1. But now
G[x, z, z′, vi−1, vi+2, y] is isomorphic to K1,3 +K2, a contradiction. In order to see that G0 is of
bounded clique-width, we complement the edges between every pair of consecutive large sets.
From Claim (4) and the discussion above, it follows that the resulting graph is of vertex degree
at most 2. From Fact 1 it follows that this graph has bounded clique-width, and therefore
applying Fact 4, G0 has bounded clique-width.

Case 1 allows us to assume that G contains a large set such that the opposite sets are small.
Without loss of generality we let V1 be large, and V3 and V4 be small. The rest of the proof is
based on the analysis of the size of the sets V2 and V5.

Case 2: V2 and V5 are large. Then by Claims (1),(3),(6) and (7), G0 is a bipartite graph
with bipartition (V1, V2 ∪ V5 ∪ V0). Therefore by Fact 2, G0 has bounded clique-width.

Case 3: V2 and V5 are small. Then G0 is a bipartite graph with bipartition (V1, V0), and
therefore, by Fact 2, G0 has bounded clique-width.

Case 4: V2 is large and V5 is small, i.e. G0 is induced by V0 ∪ V1 ∪ V2. Consider a vertex
w ∈ V0 that is adjacent to some vertex x ∈ V1 (resp. y ∈ V2). We claim that
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(9) w is complete to all the non-neighbours of x in V2 (resp. of y in V1). By symmetry we let
x belong to V1 and for contradiction, suppose that w is non-adjacent to a non-neighbour
z ∈ V2 of x. Since V1 is large, it follows from Claims (4) and (5) that V1 contains three
vertices x1, x2, x3 adjacent to z and non-adjacent to w. But now G0[z, x1, x2, x3, x, w] is
isomorphic to K1,3 + K2, a contradiction.

In order to see that G0 has bounded clique-width, we complement the edges between V1 and
V2. Let us denote the resulting graph by G′

0. From Facts 4 and 5, it follows that it is enough to
show that each connected component of G′

0 has bounded clique-width. Let C∗ be a component
of G′

0. If C∗ has maximum vertex degree at most two, then C∗ has bounded clique-width by
Fact 1. So we may assume that C∗ contains a vertex x of degree at least three.

First suppose that x ∈ V1 ∪V2. By symmetry, we may assume x ∈ V1. We know that in the
graph G′

0 vertex x has at most two neighbours in V0 (Claim (8)) and at most two neighbours
in V2 (Claim (4)). Therefore, x is adjacent to some vertex y ∈ V2 and to some vertex w ∈ V0

in the graph G′
0. Since in the graph G0 vertex y is a non-neighbour of x, it follows from

Claim (9) that y, w are adjacent. Repeating this argument, we conclude that w is complete to
V (C∗) ∩ (V1 ∪ V2). By Claim (5), we obtain that |V (C∗) ∩ (V1 ∪ V2)| ≤ 4. Since each vertex in
V1 ∪ V2 has at most two neighbours in V0 (Claim (8)), we finally conclude that |V (C∗)| ≤ 12
and therefore the clique-width of C∗ is at most 12.

Now assume that x ∈ V0 and all vertices of C∗ in V1 ∪ V2 have degree at most 2. Since V0

is an independent set, all neighbours of x are in V1 ∪ V2. Let z, z′, z′′ denote three neighbours
of x. Without loss of generality we may assume that z, z′ ∈ V1 and z′′ ∈ V2 (Claim (5)). Since
G is K3-free, it follows that in C∗, vertex z′′ is adjacent to both z, z′. But now z′′ ∈ V2 has
degree at least three, contradicting our assumption.

From Lemmas 6, 7, 8, and 9, we derive the main result of this section.

Theorem 4. The clique-width of (K3, S1,1,3)-free graphs and (K3,K1,3 + K2)-free graphs is
bounded by a constant and therefore the vertex colouring problem is polynomial-time solv-
able in these classes of graphs.

6 Further results

In this section, we prove a few additional results. The first two results deal with graph classes
Free(K3, F ) where F is a “big” forest of simple structure.

Theorem 5. For every fixed m, the vertex colouring problem is polynomial-time solvable
in the class Free(K3,mK2).

Proof. Obviously, if a graph G is k-colourable, then it admits a k-colouring in which one of the
colour classes is a maximal independent set.

It is known that for every fixed m the number of maximal independent sets in the class
Free(mK2) is bounded by a polynomial [1] and all of them can be found in polynomial time [35].
Therefore given a mK2-free graph G, we can solve the 3-colourability problem for G by gen-
erating all maximal independent sets and solving 2-colourability for the remaining vertices
of the graph. Then by induction on k, we conclude that for any fixed k the k-colourability

problem can be solved in the class Free(mK2) in polynomial time. Since the chromatic number
of (K3,mK2)-free graphs is bounded by 2m−2 (see e.g. [3]), the vertex colouring problem
is polynomial-time solvable in the class Free(K3,mK2) for any fixed m.

Theorem 6. For every fixed m, the vertex colouring problem is polynomial-time solvable
in the class Free(K3, P3 + mK1).
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Proof. To prove the theorem, we will show that for any fixed m, graphs in the class Free(K3, P3+
mK1) are either bounded in size, or they are 3-colourable and a 3-colouring can be found in
polynomial time.

Let G be a (K3, P3 + mK1)-free graph. We start by finding a maximum independent set
in G. For each fixed m, this problem is solvable in polynomial time, which can easily be seen
by induction on m. Let S be a maximum independent set in G. Let R denote the remaining
vertices of G, i.e. R = V (G) − S. We may assume that R contains an induced odd cycle
C = v1 − v2 − . . . − vp − v1 with p ≥ 5. Since S is a maximum independent set, each vertex
of C has at least one neighbour in S. Let us call a vertex vi ∈ V (C) strong if it has at least
2 neighbours in S and weak otherwise. Since C is an odd cycle, it has either two consecutive
weak vertices or two consecutive strong vertices.

If C has two consecutive weak vertices, say v1, v2, then jointly they are adjacent to two
vertices of S, say v1 is adjacent to s1, and v2 is adjacent to s2, and therefore, they have |S| − 2
common non-neighbours in S. If |S| − 2 ≥ m, then s1, v1, v2 together with m vertices in
S \{s1, s2} induce a subgraph isomorphic to P3 +mK1, a contradiction. Therefore |S| < m+2.
But then the number of vertices in G is bounded by the Ramsey number R(3,m + 2), since G

is K3-free and contains no independent set of size m + 2.
Now assume C has two consecutive strong vertices, say v1, v2. Since the graph is (P3+mK1)-

free, every strong vertex has at most m−1 non-neighbours in S, and since the graph is K3-free,
consecutive vertices of C cannot have common neighbours. Therefore each of v1 and v2 has at
most m − 1 neighbours in S. But then |S| < 2m − 1 and hence the number of vertices of G is
bounded by the Ramsey number R(3, 2m − 1) by the same argument as before.

Thus, if R has an odd cycle, then the number of vertices in G is bounded by a constant. If
R has no odd cycles, then G[R] is bipartite, and hence G is 3-colourable. Finding a maximum
independent set in a (P3 + mK1)-free graph can be done in polynomial time, so any (K3, P3 +
mK1)-free graph is either bounded in size, or can be 3-coloured in this way in polynomial time.
Thus vertex colouring of (K3, P3 +mK1)-free graphs can be solved in polynomial time.

We conclude the paper with an alternative proof of the fact that every (K3,H)-free graph
is 3-colourable. Observe that the original proof given in [27] is about 6 pages long. We give a
much shorter proof.

Theorem 7. Every (K3,H)-free graph is 3-colourable and a 3-colouring can be found in poly-
nomial time.

Proof. Let G be a (K3,H)-free graph and S any maximal (with respect to set inclusion) inde-
pendent set in G. We assume that S admits no augmenting K1,2 (i.e. a triple x, y, z such that
x and y are nonadjacent vertices outside S with N(x) ∩ S = N(y) ∩ S = {z}), since finding an
augmenting K1,2 can be done in polynomial time.

Assume that the graph G[V \S] is not bipartite, and let vertices x1, . . . , xk induce in G[V \S]
a cycle C of odd length k ≥ 5. By maximality of S, every vertex outside S has a neighbour in
S.

Suppose that each vertex of C has exactly one neighbour in S, and let y2 ∈ S and y3 ∈ S

be the neighbours of x2 and x3, respectively. Then x1, x2, x3, x4, y2, y3 induce a copy of the
graph H (by lack of triangles and augmenting K1,2s). Thus, C must contain vertices with at
least two neighbours in S. Assume without loss of generality that x2 is of this type. If C

has two consecutive vertices each of which has at least two neighbours in S, then an induced
H can be easily found. Therefore, each of x1 and x3 has exactly one neighbour in S. If
y2 ∈ S is a neighbour of x2 and y3 ∈ S is a neighbour of x3, then x4 is adjacent to y2, since
otherwise x1, x2, y2, x3, y3, x4 induce a copy of H. Therefore, N(x2) ∩ S ⊆ N(x4) ∩ S, and by
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Graph Graph Name Complexity Reference
b

b

b

b

b

b

P6 P Theorem 1
b

b

b

b

b

b

P4 + P2 P Theorem 3
b

b

b

b

b

b

K1,3 + P2 P Theorem 4

b

b
b b b b S1,1,3 P Theorem 4

b

b

b

b

b

b

3P2 P Theorem 5
b

b

b

b

b

b

2P3 Open

Table 3: Forests F on six vertices for which the complexity of vertex colouring in
the class Free(K3, F ) is either contributed in this paper or remains open.

symmetry, N(x4) ∩ S ⊆ N(x2) ∩ S, i.e. x2 and x4 have the same neighbourhood in S. This
in turn implies that x5 has exactly one neighbour in S. Continuing inductively, we conclude
that the even-indexed vertices of C have the same neighbourhood in S consisting of at least
two vertices, and each of the odd-indexed vertices of C has exactly one neighbour in S. But
then x1, x2, xk, xk−1, y1, yk induce a copy of the graph H, where y1 ∈ S and yk ∈ S are the
neighbours of x1 and xk, respectively.

7 Concluding remarks and open problems

In this paper we studied the complexity of the vertex colouring problem in classes of
(K3, F )-free graphs with F being a forest on 6 vertices. It is know that this problem is NP-
complete if F is a star K1,5. We showed that in all other cases, with possibly one exception,
the problem is solvable in polynomial time (see Tables 2 and 3 for a summary of the results
obtained in this paper). The only exception is the class Free(K3, 2P3), where the complexity
of the problem remains an open question. We conjecture that this case is NP-hard.

One more natural direction of research is investigation of the problem in extensions of
triangle-free graphs. Let us observe that all results on triangle-free graphs can be extended,
with no extra work, to so-called paw-free graphs, where a paw is the graph obtained from a
triangle by adding a pendant edge. This follows from two facts: first, the problem can obviously
be reduced to connected graphs, and second, according to [26], a connected paw-free graph is
either complete multipartite (i.e. P 3-free), in which case the problem is trivial, or triangle-free.

Further extensions make the problem much harder. For instance, by adding a pendant
edge to each vertex of a triangle, we obtain a graph known in the literature as a net, and
according to [32] the problem is NP-hard even for (net, 2K2)-free graphs and (net, 4K1)-free
graphs. An interesting intermediate class between paw-free and net-free graphs is the class of
bull-free graphs, where a bull is the graph obtained by adding a pendant edge to two vertices of
a triangle. Recently, the class of bull-free graphs received much attention in the literature (see
e.g. [7, 6, 12, 21]). In particular, paper [6] provides a structural characterisation of bull-free
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graphs which may be helpful in designing algorithms for various graph problems, including the
vertex colouring problem.
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